Skip to main content
Log in

The influence of training status on oxidative stress in young male handball players

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Although exercise-induced oxidative stress receives considerable scientific attention, there is still little information available regarding exercise-induced adaptations of the antioxidant defence system in adolescent and child athletes. The aim of our study was to establish the effects of long-term exercise training on the redox state of adolescents, and to find correlations between elements of redox homeostasis and aerobic power. Thirty-three handball players and 14 non-athletes, 16–19-years old, were subjected to blood sampling to measure levels of nitric oxide (NO; estimated through nitrites (NO2 )), superoxide anion radical (O2 ), hydrogen peroxide (H2O2), lipid peroxidation (estimated through TBARS), superoxide dismutase (SOD) and catalase (CAT). Subjects were also subjected to maximal progressive exercise test to estimate their maximal oxygen consumption (\( {{{\text{VO}}_{ 2} { \max }}} \)). Athletes had significantly (P < 0.05) higher SOD activity and lower CAT activity compared with non-athletes (SOD: 2175.52 ± 362.07 compared with 1172.16 ± 747.40 U/g of hemoglobin × 10 3, and CAT: 2.19 ± 0.31 compared with 3.08 ± 0.47 U/g of hemoglobin × 103). These differences were the most obvious when comparing non-athletes and athletes with poor/average aerobic power. H2O2 and TBARS levels differed among subjects with poor, average or good aerobic power (P < 0.01, and P < 0.05, respectively). Sports engagament and aerobic capacity are important factors in inducing changes in redox status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    PubMed  CAS  Google Scholar 

  2. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52(4):601–623

    Article  PubMed  CAS  Google Scholar 

  3. Kojdaa G, Harrison D (1999) Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43:562–571

    Article  Google Scholar 

  4. Fisher-Wellman K, Bloomer RJ (2009) Acute exercise and oxidative stress: a 30 year history. Dyn Med 8:1–25

    Article  PubMed  Google Scholar 

  5. Finaud J, Lac G, Filaire E (2006) Oxidative stress: relationship with exercise and training. Sports Med 36(4):327–358

    Article  PubMed  Google Scholar 

  6. Tanskanen M, Atalay M, Uusitalo A (2010) Altered oxidative stress in overtrained athletes. J Sports Sci 28(3):309–317

    Article  PubMed  Google Scholar 

  7. Dillard CJ, Litov RE, Savin WM (1978) Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J Appl Physiol 45:927–932

    PubMed  CAS  Google Scholar 

  8. Vollaard NB, Shearman JP, Cooper CE (2005) Exercise-induced oxidative stress: myths, realities and physiological relevance. Sports Med 35(12):1045–1062

    Article  PubMed  Google Scholar 

  9. Elosua R, Molina L, Fito M et al (2003) Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis 167(2):327–334

    Article  PubMed  CAS  Google Scholar 

  10. Fatouros IG, Jamurtas AZ, Villiotou V et al (2004) Oxidative stress responses in older men during endurance training and detraining. Med Sci Sports Exerc 36(12):2065–2072

    Article  PubMed  CAS  Google Scholar 

  11. Warburton DE, Nicol CW, Bredin SS (2006) Health benefits of physical activity: the evidence. CMAJ 174:801–809

    Article  PubMed  Google Scholar 

  12. Melzer K, Kayser B, Pichard C (2004) Physical activity: the health benefits outweigh the risks. Curr Opin Clin Nutr Metab Care 7:641–647

    Article  PubMed  Google Scholar 

  13. Radak Z, Chung HY, Goto S (2008) Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med 44(2):153–159

    Article  PubMed  CAS  Google Scholar 

  14. Evelson P, Gambino G, Travacio M et al (2002) Higher antioxidant defences in plasma and low density lipoproteins from rugby players. Eur J Clin Investig 32(11):818–825

    Article  CAS  Google Scholar 

  15. Radak Z, Chung HY, Koltai E, Taylor AW, Goto S (2008) Exercise, oxidative stress and hormesis. Ageing Res Rev 7(1):34–42

    Article  PubMed  CAS  Google Scholar 

  16. Marzatiko F, Pansarasa O, Bertorelli L et al (1997) Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. J Sports Med Phys Fit 37:235–239

    Google Scholar 

  17. Hellsten Y, Apple FS, Sjodin B (1996) Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle. J Appl Physiol 81(4):1484–1487

    PubMed  CAS  Google Scholar 

  18. Selamoglu S, Turgay F, Kayatekin BM et al (2000) Aerobic and anaerobic training effects on the antioxidant enzymes in the blood. Acta Physiol Hung 87(3):267–273

    Article  PubMed  CAS  Google Scholar 

  19. Miyazaki H, Oh-ishi S, Ookawara T et al (2001) Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol 84(1–2):1–6

    Article  PubMed  CAS  Google Scholar 

  20. Lekhi C, Gupta PH, Singh B (2007) Influence of exercise on oxidant stress products in elite Indian cyclists. Br J Sports Med 41(10):691–693

    Article  PubMed  Google Scholar 

  21. Powers SK, Ji LL, Leewenburg C (1999) Exercise-training induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc 31(7):987–997

    Article  PubMed  CAS  Google Scholar 

  22. Cazzola R, Russo-Volpe S, Cervato G, Cestaro B (2003) Biochemical assessments of oxidative stress, erythrocyte membrane fluidity and antioxidant status in professional soccer players and sedentary controls. Eur J Clin Investig 33(10):924–930

    Article  CAS  Google Scholar 

  23. Chang CK, Tseng HF, Hsuuw YD et al (2002) Higher LDL oxidation at rest and after a rugby game in weekend warriors. Ann Nutr Metab 46:103–107

    Article  PubMed  CAS  Google Scholar 

  24. Metin G, Gumustas MK, Uslu E et al (2003) Effect of regular training on plasma thiols, malondialdehyde and carnitine concentrations in young soccer players. Chin J Physiol 46(1):35–39

    PubMed  CAS  Google Scholar 

  25. Cooper DM, Nemet D, Galassetti P (2004) Exercise, stress, and inflammation in the growing child: from the bench to the playground. Curr Opin Pediatr 16(3):286–292

    Article  PubMed  Google Scholar 

  26. Armstrong N, McManus AM, Welsman JR (2008) Aerobic fitness. In: Armstrong N, Mechelen W (eds) Paediatric exercise science and medicine. Oxford University Press, Oxford, pp 269–282

    Google Scholar 

  27. Boisseau N, Delamarche P (2000) Metabolic and hormonal responses to exercise in children and adolescents. Sports Med 30(6):405–422

    Article  PubMed  CAS  Google Scholar 

  28. Cooper CB (2004) Classification of cardiorespiratory fitness based on maximum oxygen uptake. In: Cooper CB, Storer TW (eds) Exercise testing and interpretation—a practical approach. Cambridge University Press, Cambridge, p 239

    Google Scholar 

  29. Howley ET, Bassett DR Jr, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27(9):1292–1301

    PubMed  CAS  Google Scholar 

  30. McCord JM, Fridovich I (1969) The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 244(22):6056–6063

    PubMed  CAS  Google Scholar 

  31. Beutler E (1982) Catalase. In: Beutler E (ed) Red cell metabolism, a manual of biochemical methods. Grune and Stratton, New York, pp 105–106

    Google Scholar 

  32. Tsuchihashi M (1923) Zur Kernntnis der blutkatalase. Biochem Z 140:65–72

    Google Scholar 

  33. Misra HP, Fridovich I (1972) The role of superoxide-anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    PubMed  CAS  Google Scholar 

  34. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15 N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  PubMed  CAS  Google Scholar 

  35. Auclair C, Voisin E (1985) Nitroblue tetrazolium reduction. In: Greenvvald RA (ed) Handbook of methods for oxygen radical research. CRC Press Ine., Boca Raton, pp 123–132

    Google Scholar 

  36. Pick E, Keisari Y (1980) A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 38:161–170

    Article  PubMed  CAS  Google Scholar 

  37. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  38. Naghizadeh H, Afzalpour ME, Zarban A (2009) The comparison of antioxidant status and lipid profile of karate athletes with non-athletes. J Birjand Univ Med Sci 16(3):54–61

    Google Scholar 

  39. Brites FD, Evelson PA, Christiansen MG, Nicol MF, Basílico MJ, Wikinski RW, Llesuy SF (1999) Soccer players under regular training show oxidative stress but an improved plasma antioxidant status. Clin Sci 96(4):381–385

    Article  PubMed  CAS  Google Scholar 

  40. Ortenblad N, Madsen K, Djurhuus MS (1997) Antioxidant status and lipid peroxidation after short-term maximal exercise in trained and untrained humans. Am J Physiol 272(4):R1258–R1263

    PubMed  CAS  Google Scholar 

  41. Balakrishnan SD, Anuradh CV (1998) Exercise, depletion of antioxidants and antioxidant manipulation. Cell Biochem Funct 16:269–275

    Article  PubMed  CAS  Google Scholar 

  42. Djujic I, Jozanov-Stankov O, Demajo M (2003) Oxidative stress and antioxidant defense markers in the population of Serbia and Montenegro. Physiol Pharmacol Acta 39:121–128

    Google Scholar 

  43. Nikolic-Kokic A, Stevic Z, Blagojevic D, Davidovic D, Jones DR, Spasic MB (2006) Alterations in anti-oxidative defence enzymes in erythrocytes from sporadic amyotrophic lateral sclerosis (SALS) and familial ALS patients. Clin Chem Lab Med 44:589–593

    Article  PubMed  CAS  Google Scholar 

  44. Djordjevic D, Cubrilo D, Zivkovic V, Barudzic N, Vuletic M, Jakovljevic V (2010) Pre-exercise superoxide dismutase activity affects the pro/antioxidant response to acute exercise. Ser J Exp Clin Res 11(4):145–153

    Google Scholar 

  45. Kingwell BA, Sherrard B, Jennings GL, Dart AM (1997) Four weeks of cycle training increases basal production of nitric oxide from the forearm. Am J Physiol 272(3 Pt 2):H1070–H1077

    PubMed  CAS  Google Scholar 

  46. Jungersten L, Ambring A, Wall B, Wennmalm A (1997) Both physical fitness and acute exercise regulate nitric oxide formation in healthy humans. J Appl Physiol 82:760–764

    Article  PubMed  CAS  Google Scholar 

  47. Poveda JJ, Riestra A, Salas E, Cagigas ML, López-Somoza C, Amado JA, Berrazueta JR (1997) Contribution of nitric oxide to exercise-induced changes in healthy volunteers: effects of acute exercise and long-term physical training. Eur J Clin Investiig 27(11):967–971

    Article  CAS  Google Scholar 

  48. Banfi G, Malavazos A, Iorio E, Dolci A, Doneda L, Verna R, Corsi MM (2006) Plasma oxidative stress biomarkers, nitric oxide and heat shock protein 70 in trained elite soccer players. Eur J Appl Physiol 96(5):483–486

    Article  PubMed  CAS  Google Scholar 

  49. Maeda S, Miyauchi T, Kakiyama T et al (2001) Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sci 69(9):1005–1016

    Article  PubMed  CAS  Google Scholar 

  50. Maiorana A, O’Driscoll G, Taylor R, Green D (2003) Exercise and the nitric oxide vasodilator system. Sports Med 33(14):1013–1035

    Article  PubMed  Google Scholar 

  51. Green DJ, Maiorana A, O’Driscoll G, Taylor R (2004) Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol 561:1–25

    Article  PubMed  CAS  Google Scholar 

  52. Lewis T, Dart AM, Chin-Dusting JPF, Kingwell BA (1999) Exercise training increases basal nitric oxide production from the forearm in hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 19:2782–2787

    PubMed  CAS  Google Scholar 

  53. Mendes-Ribeiro AC, Mann GE, de Meirelles LR, Moss MB, Matsuura C, Brunini TMC (2009) The Role of Exercise on l-arginine nitric oxide pathway in chronic heart failure. Open Biochem J 3:55–65

    Article  PubMed  CAS  Google Scholar 

  54. Djordjevic D, Jakovljevic V, Cubrilo D, Zlatkovic M, Zivković V, Djuric D (2010) Coordination between nitric oxide and superoxide anion radical during progressive exercise in elite soccer players. Open Biochem J 4:100–106

    CAS  Google Scholar 

  55. Rassaf T, Lauer T, Heiss C et al (2007) Nitric oxide synthase-derived plasma nitrite predicts exercise capacity. Br J Sports Med 41:669–673

    Article  PubMed  Google Scholar 

  56. Allen JD, Cobb FR, Kraus WE, Gow AJ (2006) Total nitrogen oxide following exercise testing reflects endothelial function and discriminates health status. Free Radic Biol Med 41:740–747

    Article  PubMed  CAS  Google Scholar 

  57. Hambrecht R, Fiehn E, Weigl C et al (1998) Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98:2709–2715

    PubMed  CAS  Google Scholar 

  58. Moyna NM, Thompson PD (2004) The effect of physical activity on endothelial function in man. Acta Physiol Scand 180:113–123

    Article  PubMed  CAS  Google Scholar 

  59. Tinken TM, Thijssen DHJ, Black MA, Cable NT, Green DJ (2008) Time course of change in vasodilator function and capacity in response to exercise training in humans. J Physiol 586:5003–5012

    Article  PubMed  CAS  Google Scholar 

  60. Kingwell BA (2000) Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease. FASEB J 14:1685–1696

    Article  PubMed  CAS  Google Scholar 

  61. Ziv G, Lidor R (2009) Physical characteristics, physiological attributes, and on-court performances of handball players: a review. Eur J Sport Sci 9(6):375–386

    Article  Google Scholar 

  62. Carlsohn A, Rohn S, Bittmann F, Raila J, Mayer F, Schweigert FJ (2008) Exercise increases the plasma antioxidant capacity of adolescent athletes. Ann Nutr Metab 53(2):96–103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant No. 175043 from the Ministry of Science and Technical Development of the Republic of Serbia.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Jakovljevic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djordjevic, D., Cubrilo, D., Macura, M. et al. The influence of training status on oxidative stress in young male handball players. Mol Cell Biochem 351, 251–259 (2011). https://doi.org/10.1007/s11010-011-0732-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0732-6

Keywords

Navigation