Skip to main content
Log in

Schisandrin B elicits a glutathione antioxidant response and protects against apoptosis via the redox-sensitive ERK/Nrf2 pathway in H9c2 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study investigated the signal transduction pathway involved in the cytoprotective action of (−)schisandrin B [(−)Sch B, a stereoisomer of Sch B]. Using H9c2 cells, the authors examined the effects of (−)Sch B on MAPK and Nrf2 activation, as well as the subsequent eliciting of glutathione response and protection against apoptosis. Pharmacological tools, such as cytochrome P-450 (CYP) inhibitor, antioxidant, MAPK inhibitor, and Nrf2 RNAi, were used to delineate the signaling pathway. (−)Sch B caused a time-dependent activation of MAPK in H9c2 cells, with the degree of ERK activation being much larger than that of p38 or JNK. The MAPK activation was followed by an increase in the level of nuclear Nrf2, an indirect measure of Nrf2 activation, and the eliciting of a glutathione antioxidant response. The activation of MAPK and Nrf2 seemed to involve oxidants generated from a CYP-catalyzed reaction with (−)Sch B. Both ERK inhibition by U0126 and Nrf2 suppression by Nrf2 RNAi transfection largely abolished the cytoprotection against hypoxia/reoxygenation-induced apoptosis in (−)Sch B-pretreated cells. (−)Sch B pretreatment potentiated the reoxygenation-induced ERK activation, whereas both p38 and JNK activations were suppressed. Under the condition of ERK inhibition, Sch B treatment did not protect against ischemia/reperfusion injury in an ex vivo rat heart model. The results indicate that (−)Sch B triggers a redox-sensitive ERK/Nrf2 signaling, which then elicits a cellular glutathione antioxidant response and protects against hypoxia/reoxygenation-induced apoptosis in H9c2 cells. The ERK-mediated signaling is also likely involved in the cardioprotection afforded by Sch B in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABT:

1-Amino-benzotriazole

AIF:

Apoptosis inducing factor

CYP:

Cytochrome P-450

DMTU:

Dimethylthiouracil

DTT:

Dithiothreitol

EpRE:

Electrophile response element

ERK:

Extracellular signal-regulated protein kinase

GCL:

γ-Glutamyl cysteine ligase

G6PDH:

Glucose-6-phosphate dehydrogenase

GR:

Glutathione reductase

GSH:

Reduced glutathione

JNK:

C-jun-NH2-terminal kinases

LDH:

Lactate dehydrogenase

MAPK:

Mitogen-activated protein kinases

mGCL:

Modulatory subunit of GCL

Nrf2:

Nuclear factor erythroid 2-related factor 2

p38:

p38 MAPK

PMSF:

Phenylmethylsulphonyl fluoride

ROS:

Reactive oxygen species

Sch B:

Schisandrin B

SDS:

Sodium docecyl sulfate

Trx:

Thioredoxin-1

References

  1. Ko RKM, Mak DHF (2004) Schisandrin B and other dibenzocyclooctadiene lignans. In: Packer L, Halliwel B, Ong CN (eds) Herbal and traditional medicine: molecular aspects of health. Marcel Dekker, New York, pp 289–314

    Google Scholar 

  2. Yim TK, Ko KM (1999) Methylenedioxy group and cyclooctadiene ring as structural determinants of schisandrin in protecting against myocardial ischemia-reperfusion injury in rats. Biochem Pharmacol 57:77–81

    Article  PubMed  CAS  Google Scholar 

  3. Yim TK, Ko KM (1999) Schisandrin B protects against myocardial ischemia-reperfusion injury by enhancing myocardial glutathione antioxidant status. Mol Cell Biochem 196:151–156

    Article  PubMed  CAS  Google Scholar 

  4. Chiu PY, Ko KM (2003) Time-dependent enhancement in mitochondrial glutathione status and ATP generation capacity by schisandrin B treatment decreases the susceptibility of rat hearts to ischemia-reperfusion injury. Biofactors 19:43–51

    Article  PubMed  CAS  Google Scholar 

  5. Chiu PY, Leung HY, Siu AH, Poon MK, Ko KM (2007) Schisandrin B decreases the sensitivity of mitochondria to calcium ion-induced permeability transition and protects against ischemia-reperfusion injury in rat hearts. Acta Pharmacol Sin 28:1559–1565

    Article  PubMed  CAS  Google Scholar 

  6. Chiu PY, Leung HY, Poon MK, Mak DH, Ko KM (2006) (−)Schisandrin B is more potent than its enantiomer in enhancing cellular glutathione and heat shock protein production as well as protecting against oxidant injury in H9c2 cardiomyocytes. Mol Cell Biochem 289:185–191

    Article  PubMed  CAS  Google Scholar 

  7. Chiu PY, Luk KF, Leung HY, Ng KM, Ko KM (2008) Schisandrin B stereoisomers protect against hypoxia/reoxygenation-induced apoptosis and inhibit associated changes in Ca2+-induced mitochondrial permeability transition and mitochondrial membrane potential in H9c2 cardiomyocytes. Life Sci 82:1092–1101

    Article  PubMed  CAS  Google Scholar 

  8. Chiu PY, Ko KM (2004) Schisandrin B protects myocardial ischemia-reperfusion injury partly by inducing Hsp25 and Hsp70 expression in rats. Mol Cell Biochem 266:139–144

    Article  PubMed  CAS  Google Scholar 

  9. Baek MS, Kim JY, Myung SW, Yim YH, Jeong JH, Kim DH (2001) Metabolism of dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylene dioxybiphenyl-2,2′-dicarboxylate (DDB) by human liver microsomes: characterization of metabolic pathways and of cytochrome P450 isoforms involved. Drug Metab Dispos 29:381–388

    PubMed  CAS  Google Scholar 

  10. Chen N, Ko M (2010) Schisandrin B-induced glutathione antioxidant response and cardioprotection are mediated by reactive oxidant species production in rat hearts. Biol Pharm Bull 33:825–829

    Article  PubMed  CAS  Google Scholar 

  11. D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  PubMed  Google Scholar 

  12. Dalton TP, Shertzer HG, Puga A (1999) Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39:67–101

    Article  PubMed  CAS  Google Scholar 

  13. Lyakhovich VV, Vavilin VA, Zenkov NK, Menshchikova EB (2006) Active defense under oxidative stress. The antioxidant responsive element. Biochemistry (Mosc) 71:962–974

    Article  CAS  Google Scholar 

  14. McCubrey JA, Lahair MM, Franklin RA (2006) Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 8:1775–1789

    Article  PubMed  CAS  Google Scholar 

  15. Torres M, Forman HJ (2003) Redox signaling and the MAP kinase pathways. Biofactors 17:287–296

    Article  PubMed  CAS  Google Scholar 

  16. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  PubMed  CAS  Google Scholar 

  17. Dougherty CJ, Kubasiak LA, Prentice H, Andreka P, Bishopric NH, Webster KA (2002) Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J 362:561–571

    Article  PubMed  CAS  Google Scholar 

  18. Tanos T, Marinissen MJ, Leskow FC, Hochbaum D, Martinetto H, Gutkind JS, Coso OA (2005) Phosphorylation of c-Fos by members of the p38 MAPK family. Role in the AP-1 response to UV light. J Biol Chem 280:18842–18852

    Article  PubMed  CAS  Google Scholar 

  19. Viktorsson K, Ekedahl J, Lindebro MC, Lewensohn R, Zhivotovsky B, Linder S, Shoshan MC (2003) Defective stress kinase and Bak activation in response to ionizing radiation but not cisplatin in a non-small cell lung carcinoma cell line. Exp Cell Res 289:256–264

    Article  PubMed  CAS  Google Scholar 

  20. Zheng M, Reynolds C, Jo SH, Wersto R, Han Q, Xiao RP (2005) Intracellular acidosis-activated p38 MAPK signaling and its essential role in cardiomyocyte hypoxic injury. FASEB J 19:109–111

    PubMed  CAS  Google Scholar 

  21. Crowe DL, Shemirani B (2000) The transcription factor ATF-2 inhibits extracellular signal regulated kinase expression and proliferation of human cancer cells. Anticancer Res 20:2945–2949

    PubMed  CAS  Google Scholar 

  22. Echave P, Machado-da-Silva G, Arkell RS, Duchen MR, Jacobson J, Mitter R, Lloyd AC (2009) Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesis. J Cell Sci 122:4516–4525

    Article  PubMed  CAS  Google Scholar 

  23. Ouwens DM, de Ruiter ND, van der Zon GC, Carter AP, Schouten J, van der Burgt C, Kooistra K, Bos JL, Maassen JA, Van Dam H (2002) Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38. EMBO J 21:3782–3793

    Article  PubMed  CAS  Google Scholar 

  24. Zhong CY, Zhou YM, Douglas GC, Witschi H, Pinkerton KE (2005) MAPK/AP-1 signal pathway in tobacco smoke-induced cell proliferation and squamous metaplasia in the lungs of rats. Carcinogenesis 26:2187–2195

    Article  PubMed  CAS  Google Scholar 

  25. Copple IM, Goldring CE, Kitteringham NR, Park BK (2008) The Nrf2-Keap1 defence pathway: role in protection against drug-induced toxicity. Toxicology 246:24–33

    PubMed  CAS  Google Scholar 

  26. Eggler AL, Gay KA, Mesecar AD (2008) Molecular mechanisms of natural products in chemoprevention: induction of cytoprotective enzymes by Nrf2. Mol Nutr Food Res 52(Suppl 1):S84–S94

    PubMed  Google Scholar 

  27. Owuor ED, Kong AN (2002) Antioxidants and oxidants regulated signal transduction pathways. Biochem Pharmacol 64:765–770

    Article  PubMed  CAS  Google Scholar 

  28. Jeyapaul J, Jaiswal AK (2000) Nrf2 and c-Jun regulation of antioxidant response element (ARE)-mediated expression and induction of gamma-glutamylcysteine synthetase heavy subunit gene. Biochem Pharmacol 59:1433–1439

    Article  PubMed  CAS  Google Scholar 

  29. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  PubMed  CAS  Google Scholar 

  30. Liu XP, Goldring CE, Copple IM, Wang HY, Wei W, Kitteringham NR, Park BK (2007) Extract of Ginkgo biloba induces phase 2 genes through Keap1-Nrf2-ARE signaling pathway. Life Sci 80:1586–1591

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Y, Munday R, Jobson HE, Munday CM, Lister C, Wilson P, Fahey JW, Mhawech-Fauceglia P (2006) Induction of GST and NQO1 in cultured bladder cells and in the urinary bladders of rats by an extract of broccoli (Brassica oleracea italica) sprouts. J Agric Food Chem 54:9370–9376

    Article  PubMed  CAS  Google Scholar 

  32. Ko KM, Mak DH, Li PC, Poon MK, Ip SP (1995) Enhancement of hepatic glutathione regeneration capacity by a lignan-enriched extract of Fructus schisandrae in rats. Jpn J Pharmacol 69:439–442

    Article  PubMed  CAS  Google Scholar 

  33. Luk KF, Ko KM, Ng KM (2008) Separation and purification of (−)schisandrin B from schisandrin B stereoisomers. Biochem Eng J 42:55–60

    Article  CAS  Google Scholar 

  34. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23:7198–7209

    Article  PubMed  CAS  Google Scholar 

  35. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

  36. Erfle H, Neumann B, Rogers P, Bulkescher J, Ellenberg J, Pepperkok R (2008) Work flow for multiplexing siRNA assays by solid-phase reverse transfection in multiwell plates. J Biomol Screen 13:575–580

    Article  PubMed  CAS  Google Scholar 

  37. Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, Minowa O, Miyazono K, Noda T, Ichijo H (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2:222–228

    Article  PubMed  CAS  Google Scholar 

  38. Chang F, Steelman LS, Shelton JG, Lee JT, Navolanic PM, Blalock WL, Franklin R, McCubrey JA (2003) Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway (review). Int J Oncol 22:469–480

    PubMed  CAS  Google Scholar 

  39. Yuan X, Xu C, Pan Z, Keum YS, Kim JH, Shen G, Yu S, Oo KT, Ma J, Kong AN (2006) Butylated hydroxyanisole regulates ARE-mediated gene expression via Nrf2 coupled with ERK and JNK signaling pathway in HepG2 cells. Mol Carcinog 45:841–850

    Article  PubMed  CAS  Google Scholar 

  40. Wu CC, Hsu MC, Hsieh CW, Lin JB, Lai PH, Wung BS (2006) Upregulation of heme oxygenase-1 by epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/Akt and ERK pathways. Life Sci 78:2889–2897

    Article  PubMed  CAS  Google Scholar 

  41. Na HK, Kim EH, Jung JH, Lee HH, Hyun JW, Surh YJ (2008) (−)-Epigallocatechin gallate induces Nrf2-mediated antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells. Arch Biochem Biophys 476:171–177

    Article  PubMed  CAS  Google Scholar 

  42. Zipper LM, Mulcahy RT (2003) Erk activation is required for Nrf2 nuclear localization during pyrrolidine dithiocarbamate induction of glutamate cysteine ligase modulatory gene expression in HepG2 cells. Toxicol Sci 73:124–134

    Article  PubMed  CAS  Google Scholar 

  43. Sun Z, Huang Z, Zhang DD (2009) Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS ONE 4:e6588

    Article  PubMed  Google Scholar 

  44. Jain M, Brenner DA, Cui L, Lim CC, Wang B, Pimentel DR, Koh S, Sawyer DB, Leopold JA, Handy DE, Loscalzo J, Apstein CS, Liao R (2003) Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes. Circ Res 93:e9–e16

    Article  PubMed  CAS  Google Scholar 

  45. Han D, Hanawa N, Saberi B, Kaplowitz N (2006) Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. Am J Physiol Gastrointest Liver Physiol 291:G1–G7

    Article  PubMed  CAS  Google Scholar 

  46. Franklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ (2009) Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Asp Med 30:86–98

    Article  CAS  Google Scholar 

  47. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  PubMed  CAS  Google Scholar 

  48. Tao L, Gao E, Hu A, Coletti C, Wang Y, Christopher TA, Lopez BL, Koch W, Ma XL (2006) Thioredoxin reduces post-ischemic myocardial apoptosis by reducing oxidative/nitrative stress. Br J Pharmacol 149:311–318

    Article  PubMed  CAS  Google Scholar 

  49. Shioji K, Nakamura H, Masutani H, Yodoi J (2003) Redox regulation by thioredoxin in cardiovascular diseases. Antioxid Redox Signal 5:795–802

    Article  PubMed  CAS  Google Scholar 

  50. Das DK, Maulik N (2003) Preconditioning potentiates redox signaling and converts death signal into survival signal. Arch Biochem Biophys 420:305–311

    Article  PubMed  CAS  Google Scholar 

  51. Turoczi T, Chang VW, Engelman RM, Maulik N, Ho YS, Das DK (2003) Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx1. J Mol Cell Cardiol 35:695–704

    Article  PubMed  CAS  Google Scholar 

  52. Shioji K, Kishimoto C, Nakamura H, Masutani H, Yuan Z, Oka S, Yodoi J (2002) Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity. Circulation 106:1403–1409

    Article  PubMed  CAS  Google Scholar 

  53. Das DK, Maulik N (2004) Conversion of death signal into survival signal by redox signaling. Biochemistry (Mosc) 69:10–17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a GRF Grant (Project number: 661107) (Principal Investigator Dr. K.M. Ko) from the Research Grants Council, Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kam Ming Ko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, P.Y., Chen, N., Leong, P.K. et al. Schisandrin B elicits a glutathione antioxidant response and protects against apoptosis via the redox-sensitive ERK/Nrf2 pathway in H9c2 cells. Mol Cell Biochem 350, 237–250 (2011). https://doi.org/10.1007/s11010-010-0703-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0703-3

Keywords

Navigation