Skip to main content

Advertisement

Log in

Acacetin inhibits the invasion and migration of human non-small cell lung cancer A549 cells by suppressing the p38α MAPK signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Lung cancer is one of the most common malignancies in the world and its metastasis is the major cause of death in cancer patients. Acacetin (5,7-dihydroxy-4′-methoxyflavone), a flavonoid compound, has anti-peroxidative and anti-inflammatory effects. The effect of acacetin on invasion and migration in human NSCLC A549 cells was investigated. First, the result demonstrated acacetin could exhibit an inhibitory effect on the abilities of the adhesion, morphology/actin cytoskeleton arrangement, invasion, and migration by cell–matrix adhesion assay, immunofluorescence assay, Boyden chamber assay, and wound-healing assay. Molecular data showed that the effect of acacetin in A549 cells might be mediated via sustained inactivation of the phosphorylation of mixed-lineage protein kinase 3 (MLK3), mitogen-activated protein kinase kinases 3/6 (MKK3/6), and p38α MAPK signal involved in the downregulation of the expressions of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and urokinase-type plasminogen activator (u-PA). Next, acacetin significantly decreased in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), and the nuclear levels of nuclear factor kappa B (NF-κB), c-Fos, and c-Jun. Also, the treatment with acacetin to A549 cells also leads to a concentration-dependent inhibition on the binding abilities of NF-κB and activator protein-1 (AP-1). Furthermore, the treatment of specific inhibitor for p38 MAPK (SB203580) to A549 cells could cause reduced activities of MMP-2/9 and u-PA. In addition, acacetin significantly decreased the levels of phospho-p38α MAPK, MMP-2/9, and u-PA in p38α-cDNA-transfected cells concomitantly with a marked reduction on cell invasion and migration. Our results revealed the anti-migration and anti-invasion effects of acacetin, which may act as a promising therapeutic agent for the treatment of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MMPs:

Matrix metalloproteinases

u-PA:

Urokinase-type plasminogen activator

ECM:

Extracellular matrix

ERK:

Extracellular signaling-regulating kinase

JNK/SAPK:

c-Jun N-terminal kinase/stress-activated protein kinase

p38 MAPK:

p38 Mitogen-activated protein kinase

PI3K:

Phosphoinositide 3-kinase

MKK3/6:

Mitogen-activated protein kinase kinase

MLK3:

Mixed-lineage protein kinase 3

NF-κB:

Nuclear factor kappa B

IκBα:

Inhibitor of kappaBα

AP-1:

Activator protein-1

References

  1. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Article  PubMed  CAS  Google Scholar 

  2. Sporn MB, Suh N (2000) Chemoprevention of cancer. Carcinogenesis 21:525–530

    Article  PubMed  CAS  Google Scholar 

  3. Lippman SM, Hong WK (2002) Cancer prevention science and practice. Cancer Res 62:5119–5125

    PubMed  CAS  Google Scholar 

  4. Clinton SK, Giovannucci E (1998) Diet, nutrition, and prostate cancer. Annu Rev Nutr 18:413–440

    Article  PubMed  CAS  Google Scholar 

  5. Kraft C, Jenett-Siems K, Siems K, Jakupovic J, Mavi S, Bienzle U, Eich E (2003) In vitro antiplasmodial evaluation of medicinal plants from Zimbabwe. Phytother Res 17:123–128

    Article  PubMed  CAS  Google Scholar 

  6. Pan MH, Lai CS, Wang YJ, Ho CT (2006) Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice. Biochem Pharmacol 72:1293–1303

    Article  PubMed  CAS  Google Scholar 

  7. Yin Y, Gong FY, Wu XX, Sun Y, Li YH, Chen T, Xu Q (2008) Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. J Ethnopharmacol 120:1–6

    Article  PubMed  CAS  Google Scholar 

  8. Hsu YL, Kuo PL, Lin CC (2004) Acacetin inhibits the proliferation of HepG2 by blocking cell cycle progression and inducing apoptosis. Biochem Pharmacol 67:823–829

    Article  PubMed  CAS  Google Scholar 

  9. Hsu YL, Kuo PL, Liu CF, Lin CC (2004) Acacetin-induced cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells. Cancer Lett 212:53–60

    Article  PubMed  CAS  Google Scholar 

  10. Pan MH, Lai CS, Hsu PC, Wang YJ (2005) Acacetin induces apoptosis in human gastric carcinoma cells accompanied by activation of caspase cascades and production of reactive oxygen species. J Agric Food Chem 53:620–630

    Article  PubMed  CAS  Google Scholar 

  11. Shim HY, Park JH, Paik HD, Nah SY, Kim DS, Han YS (2007) Acacetin-induced apoptosis of human breast cancer MCF-7 cells involves caspase cascade, mitochondria-mediated death signaling and SAPK/JNK1/2-c-Jun activation. Mol Cells 24:95–104

    PubMed  CAS  Google Scholar 

  12. Singh RP, Agrawal P, Yim D, Agarwal C, Agarwal R (2005) Acacetin inhibits cell growth and cell cycle progression, and induces apoptosis in human prostate cancer cells: structure–activity relationship with linarin and linarin acetate. Carcinogenesis 26:845–854

    Article  PubMed  CAS  Google Scholar 

  13. Zhang K, Yang EB, Tang Wong KP, Mack P (1997) Inhibition of glutathione reductase by plant polyphenols. Biochem Pharmacol 54:1047–1053

    Article  PubMed  CAS  Google Scholar 

  14. Doostdar H, Burke MD, Mayer RT (2000) Bioflavonoids: selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1. Toxicology 144:31–38

    Article  PubMed  CAS  Google Scholar 

  15. Boege F, Straub T, Kehr A, Boesenberg C, Christiansen K, Andersen A, Jakob F, Köhrle J (1996) Selected novel flavones inhibit the DNA binding or the DNA religation step of eukaryotic topoisomerase I. J Biol Chem 271:2262–2270

    Article  PubMed  CAS  Google Scholar 

  16. Bernhard EJ, Gruber SB, Muschel RJ (1994) Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci USA 91:4293–4297

    Article  PubMed  CAS  Google Scholar 

  17. Duffy MJ, Duggan C (2004) The urokinase plasminogen activator system: a rich source of tumour markers for the individualized management of patients with cancer. Clin Biochem 37:541–548

    Article  PubMed  CAS  Google Scholar 

  18. Itoh Y, Nagase H (2002) Matrix metalloproteinases in cancer. Essays Biochem 38:21–36

    PubMed  CAS  Google Scholar 

  19. Weiss L (1990) Metastatic inefficiency. Adv Cancer Res 54:159–211

    Article  PubMed  CAS  Google Scholar 

  20. Huang SC, Ho CT, Lin-Shiau SY, Lin JK (2005) Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappa B and c-Jun. Biochem Pharmacol 69:221–232

    Article  PubMed  CAS  Google Scholar 

  21. Westermarck J, Kahari VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792

    PubMed  CAS  Google Scholar 

  22. Aguirre Ghiso JA, Alonso DF, Farias EF, Gomez DE, de Kier Joffe EB (1999) Deregulation of the signaling pathways controlling urokinase production. Its relationship with the invasive phenotype. Eur J Biochem 263:295–304

    Article  PubMed  CAS  Google Scholar 

  23. Pearson G, Robinson F, Beers Gibson T, Xu B, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  PubMed  CAS  Google Scholar 

  24. Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ (1996) MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen activated protein kinase signal transduction pathway. Mol Cell Biol 16:1247–1255

    PubMed  CAS  Google Scholar 

  25. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  PubMed  CAS  Google Scholar 

  26. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663

    Article  PubMed  CAS  Google Scholar 

  27. Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269:199–225

    Article  PubMed  CAS  Google Scholar 

  28. Lee SO, Jeong YJ, Im HG, Kim CH, Chang YC, Lee IS (2007) Silibinin suppresses PMA-induced MMP-9 expression by blocking the AP-1 activation via MAPK signaling pathways in MCF-7 human breast carcinoma cells. Biochem Biophys Res Commun 354:165–171

    Article  PubMed  CAS  Google Scholar 

  29. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  30. Ochi Y, Atsumi S, Aoyagi T, Umezawa K (1993) Inhibition of tumor cell invasion in the Boyden chamber assay by a mannosidase inhibitor, mannostatin A. Anticancer Res 13:1421–1424

    PubMed  CAS  Google Scholar 

  31. Chu SC, Chiou HL, Chen PN, Yang SF, Hsieh YS (2004) Silibinin inhibits the invasion of humanlung cancer cells viadecreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Mol Carcinog 40:143–149

    Article  PubMed  CAS  Google Scholar 

  32. Ito H, Duxbury M, Benoit E, Clancy TE, Zinner MJ, Ashley SW, Whang EE (2004) Prostaglandin E2 enhances pancreatic cancer invasiveness through an Ets-1-dependent induction of matrix metalloproteinase-2. Cancer Res 64:7439–7446

    Article  PubMed  CAS  Google Scholar 

  33. Ma W, Lim W, Gee K, Aucoin S, Nandan D, Kozlowski M, Diaz-Mitoma F, Kumar A (2001) The p38 mitogen-activated kinase pathway regulates the human interleukin-10 promoter via the activation of Sp1 transcription factor in lipopolysaccharide stimulated human macrophages. J Biol Chem 276:13664–13674

    PubMed  CAS  Google Scholar 

  34. Lin HH, Chen JH, Kuo WH, Wang CJ (2007) Chemopreventive properties of Hibiscus sabdariffa L. on human gastric carcinoma cells through apoptosis induction and JNK/p38 MAPK signaling activation. Chem Biol Interact 165:59–75

    Article  PubMed  CAS  Google Scholar 

  35. Choudhury GG, Karamitsos C, Hernandez J, Gentilini A, Bardgette J, Abboud HE (1997) PI-3-kinase and MAPK regulate mesangial cell proliferation and migration in response to PDGF. Am J Physiol 273:F931–F938

    PubMed  CAS  Google Scholar 

  36. Duan C, Bauchat JR, Hsieh T (2000) Phosphatidylinositol 3-kinase is required for insulin-like growth factor-I-induced vascular smooth muscle cell proliferation and migration. Circ Res 86:15–23

    PubMed  CAS  Google Scholar 

  37. Brockman JA, Scherer DC, McKinsey TA, Hall SM, Qi X, Lee WY, Ballard DW (1995) Coupling of a signal response domain in IκBa to multiple pathways for NF-κB activation. Mol Cell Biol 15:2809–2818

    PubMed  CAS  Google Scholar 

  38. Lee SO, Jeong YJ, Im HG, Kim CH, Chang YC, Lee IS (2007) Silibinin suppresses PMA-induced MMP-9 expression by blocking the AP-1 activation via MAPK signaling pathways in MCF-7 human breast carcinoma cells. Biophys Res Commun 354:165–171

    Article  CAS  Google Scholar 

  39. Al Husaini H, Wheatley-Price P, Clemons M, Shepherd FA (2009) Prevention and management of bone metastasis in lung cancer: a review. J Thorac Oncol 4:251–259

    Article  PubMed  Google Scholar 

  40. Pal SK, Figlin RA, Reckamp KL (2008) The role of targeting mammalian target of rapamycin in lung cancer. Clin Lung Cancer 9:340–345

    Article  PubMed  CAS  Google Scholar 

  41. Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS, Chung J (2001) Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J 15:1953–1962

    Article  PubMed  CAS  Google Scholar 

  42. Kleiner DE, Stetler-Stevenson WG (1999) Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 43:S42–S51

    Article  PubMed  CAS  Google Scholar 

  43. Stetler-Stevenson WG, Aznavoorian S, Liotta LA (1993) Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9:541–573

    Article  PubMed  CAS  Google Scholar 

  44. Carter AB, Knudtson KL, Monick MM, Hunninghake GW (1999) The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression. The role of TATA-binding protein (TBP). J Biol Chem 274:30858–30863

    Article  PubMed  CAS  Google Scholar 

  45. Lasa M, Brook M, Saklatvala J, Clark AR (2001) Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogen-activated protein kinase p38. Mol Cell Biol 21:771–780

    Article  PubMed  CAS  Google Scholar 

  46. Johansson N, Ala-aho R, Uitto V, Grénman R, Fusenig NE, López-Otín C, Kähäri VM (2000) Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase. J Cell Sci 113:227–235

    PubMed  CAS  Google Scholar 

  47. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    Article  PubMed  CAS  Google Scholar 

  48. Rothhammer T, Hahne JC, Florin A, Poser I, Soncin F, Wernert N, Bosserhoff AK (2004) The Ets-1 transcription factor is involved in the development and invasion of malignant melanoma. Cell Mol Life Sci 61:118–128

    Article  PubMed  CAS  Google Scholar 

  49. Sliva D (2004) Signaling pathways responsible for cancer cell invasion as targets for cancer therapy. Curr Cancer Drug Targets 4:327–336

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the grant from the Subsidized Project of the Kaohsiung Armed Forces General Hospital (9929) and Chung Hwa University of Medical Technology (98-HT-08005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao Fong or Yuan-Wei Shih.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chien, ST., Lin, SS., Wang, CK. et al. Acacetin inhibits the invasion and migration of human non-small cell lung cancer A549 cells by suppressing the p38α MAPK signaling pathway. Mol Cell Biochem 350, 135–148 (2011). https://doi.org/10.1007/s11010-010-0692-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0692-2

Keywords

Navigation