Skip to main content

Advertisement

Log in

PTEN status is related to cell proliferation and self-renewal independent of CD133 phenotype in the glioma-initiating cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

CD133 is extensively used as a surface marker to identify and isolate glioma-initiating cells (GICs) from malignant brain tumors; however, instances of CD133 cells exhibiting similar properties have also been reported. To clarify the availability of CD133 as the GIC marker, we first evaluated the ratio of CD133+ cells and malignancy of glioma spheroids GIC1 and GIC2, respectively. GIC1, which showed a lower percentage of CD133+ cells, exhibited a highly aggressive behavior in comparison with GIC2. The following experiments demonstrated that tumor suppressor PTEN was lost in GIC1, resulting in the activation of AKT pathway. Overexpression of recombinant PTEN in GIC1 suppressed its proliferation and self-renew without significant effect on CD133 expression level, indicating that the inconsistence between the ratio of CD133+ cells and proliferation and self-renewal capacity of GIC1 and GIC2 was caused by PTEN deficiency. To further validate our conclusion, a series of GICs were analyzed and the percentages of CD133+ cells could not reflect the degrees of cell proliferation and self-renewal characteristics in the PTEN deficient GICs, suggesting that the application of CD133 as the GIC maker was restricted by PTEN loss. Furthermore, down-regulation of PTEN in the PTEN-expressing GICs could break the positive correlation between the ratio of CD133+ cells and proliferation and self-renewal capacity. Our results demonstrated that PTEN status is related to cell proliferation and self-renewal independent of CD133 phenotype in the glioma-initiating cells, resulting in the limitations of CD133 as a biomarker for PTEN deficient GICs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hallahan D, Geng L, Qu S, Scarfone C, Giorgio T et al (2003) Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell 3:63–74

    Article  CAS  PubMed  Google Scholar 

  2. Dick JE (2008) Stem cell concepts renew cancer research. Blood 112:4793–4807

    Article  CAS  PubMed  Google Scholar 

  3. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  CAS  PubMed  Google Scholar 

  4. Fan X, Salford LG, Widegren B (2007) Glioma stem cells: evidence and limitation. Semin Cancer Biol 17:214–218

    Article  CAS  PubMed  Google Scholar 

  5. Lesniak MS (2006) Targeted therapy for malignant glioma: neural stem cells. Expert Rev Neurother 6:1–3

    Article  PubMed  Google Scholar 

  6. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  7. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R et al (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90:5013–5021

    CAS  PubMed  Google Scholar 

  8. Yu Y, Flint A, Dvorin EL, Bischoff J (2002) AC133–2, a novel isoform of human AC133 stem cell antigen. J Biol Chem 277:20711–20716

    Article  CAS  PubMed  Google Scholar 

  9. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  10. Shu Q, Wong KK, Su JM, Adesina AM, Yu LT et al (2008) Direct orthotopic transplantation of fresh surgical specimen preserves CD133+ tumor cells in clinically relevant mouse models of medulloblastoma and glioma. Stem Cells 26:1414–1424

    Article  PubMed  Google Scholar 

  11. Wu A, Oh S, Wiesner SM, Ericson K, Chen L et al (2008) Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties. Stem Cells Dev 17:173–184

    Article  CAS  PubMed  Google Scholar 

  12. Cheng JX, Liu BL, Zhang X (2009) How powerful is CD133 as a cancer stem cell marker in brain tumors? Cancer Treat Rev 35:403–408

    Article  CAS  PubMed  Google Scholar 

  13. Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S et al (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4:568–580

    Article  CAS  PubMed  Google Scholar 

  14. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J et al (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015

    Article  CAS  PubMed  Google Scholar 

  15. Joo KM, Kim SY, Jin X, Song SY, Kong DS et al (2008) Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest 88:808–815

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Sakariassen PO, Tsinkalovsky O, Immervoll H, Boe SO et al (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122:761–768

    Article  CAS  PubMed  Google Scholar 

  17. Clement V, Dutoit V, Marino D, Dietrich PY, Radovanovic I (2009) Limits of CD133 as a marker of glioma self-renewing cells. Int J Cancer 125:244–248

    Article  CAS  PubMed  Google Scholar 

  18. Alexiou GA, Voulgaris S (2010) The role of the PTEN gene in malignant gliomas. Neurol Neurochir Pol 44:80–86

    PubMed  Google Scholar 

  19. Duerr EM, Rollbrocker B, Hayashi Y, Peters N, Meyer-Puttlitz B et al (1998) PTEN mutations in gliomas and glioneuronal tumors. Oncogene 16:2259–2264

    Article  CAS  PubMed  Google Scholar 

  20. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  CAS  PubMed  Google Scholar 

  21. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    Article  CAS  PubMed  Google Scholar 

  22. Radu A, Neubauer V, Akagi T, Hanafusa H, Georgescu MM (2003) PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol Cell Biol 23:6139–6149

    Article  CAS  PubMed  Google Scholar 

  23. Stiles B, Gilman V, Khanzenzon N, Lesche R, Li A et al (2002) Essential role of AKT-1/protein kinase B alpha in PTEN-controlled tumorigenesis. Mol Cell Biol 22:3842–3851

    Article  CAS  PubMed  Google Scholar 

  24. Hu TH, Huang CC, Lin PR, Chang HW, Ger LP et al (2003) Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 97:1929–1940

    Article  CAS  PubMed  Google Scholar 

  25. Izumoto S, Ohnishi T, Kanemura H, Arita N, Maruno M et al (2001) PTEN mutations in malignant gliomas and their relation with meningeal gliomatosis. J Neurooncol 53:21–26

    Article  CAS  PubMed  Google Scholar 

  26. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  CAS  PubMed  Google Scholar 

  27. Koller E, Propp S, Murray H, Lima W, Bhat B et al (2006) Competition for RISC binding predicts in vitro potency of siRNA. Nucleic Acids Res 34:4467–4476

    Article  CAS  PubMed  Google Scholar 

  28. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967

    Article  CAS  PubMed  Google Scholar 

  29. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  CAS  PubMed  Google Scholar 

  30. Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175:1–13

    Article  CAS  PubMed  Google Scholar 

  31. Gilbert CA, Daou MC, Moser RP, Ross AH (2010) Gamma-secretase inhibitors enhance temozolomide treatment of human gliomas by inhibiting neurosphere repopulation and xenograft recurrence. Cancer Res 70:6870–6879

    Article  CAS  PubMed  Google Scholar 

  32. Singec I, Knoth R, Meyer RP, Maciaczyk J, Volk B et al (2006) Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat Methods 3:801–806

    Article  CAS  PubMed  Google Scholar 

  33. Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A et al (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294:2186–2189

    Article  CAS  PubMed  Google Scholar 

  34. Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM et al (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14:123–129

    Article  CAS  PubMed  Google Scholar 

  35. Liu G, Yuan X, Zeng Z, Tunici P, Ng H et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  PubMed  Google Scholar 

  36. Hambardzumyan D, Squatrito M, Holland EC (2006) Radiation resistance and stem-like cells in brain tumors. Cancer Cell 10:454–456

    Article  CAS  PubMed  Google Scholar 

  37. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E et al (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765

    Article  CAS  PubMed  Google Scholar 

  38. Clark PA, Treisman DM, Ebben J, Kuo JS (2007) Developmental signaling pathways in brain tumor-derived stem-like cells. Dev Dyn 236:3297–3308

    Article  CAS  PubMed  Google Scholar 

  39. Lasky JL, Liau LM (2006) Targeting stem cells in brain tumors. Technol Cancer Res Treat 5:251–260

    CAS  PubMed  Google Scholar 

  40. Rebetz J, Tian D, Persson A, Widegren B, Salford LG et al (2008) Glial progenitor-like phenotype in low-grade glioma and enhanced CD133-expression and neuronal lineage differentiation potential in high-grade glioma. PLoS One 3:e1936

    Article  PubMed  Google Scholar 

  41. Tong QS, Zheng LD, Tang ST, Ruan QL, Liu Y et al (2008) Expression and clinical significance of stem cell marker CD133 in human neuroblastoma. World J Pediatr 4:58–62

    Article  PubMed  Google Scholar 

  42. Kong DS, Kim MH, Park WY, Suh YL, Lee JI et al (2008) The progression of gliomas is associated with cancer stem cell phenotype. Oncol Rep 19:639–643

    CAS  PubMed  Google Scholar 

  43. Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T et al (2008) Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 26:3015–3024

    Article  CAS  PubMed  Google Scholar 

  44. Keniry M, Parsons R (2008) The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 27:5477–5485

    Article  CAS  PubMed  Google Scholar 

  45. Altomare DA, Tanno S, De Rienzo A, Klein-Szanto AJ, Tanno S et al (2002) Frequent activation of AKT2 kinase in human pancreatic carcinomas. J Cell Biochem 87:470–476

    Article  PubMed  Google Scholar 

  46. Lee DH, Szczepanski MJ, Lee YJ (2009) Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J Cell Biochem 106:1113–1122

    Article  CAS  PubMed  Google Scholar 

  47. Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC (2008) PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22:436–448

    Article  CAS  PubMed  Google Scholar 

  48. Eyler CE, Foo WC, LaFiura KM, McLendon RE, Hjelmeland AB, Rich JN (2008) Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells 26:3027–3036

    Article  CAS  PubMed  Google Scholar 

  49. Chugh P, Bradel-Tretheway B, Monteiro-Filho CM, Planelles V, Maggirwar SB, Dewhurst S, Kim B (2008) Akt inhibitors as an HIV-1 infected macrophage-specific anti-viral therapy. Retrovirology 5:11

    Article  PubMed  Google Scholar 

  50. Martelli AM, Tazzari PL, Tabellini G, Bortul R, Billi AM et al (2003) A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells. Leukemia 17:1794–1805

    Article  CAS  PubMed  Google Scholar 

  51. Mandal M, Kim S, Younes MN, Jasser SA, El-Naggar AK, Mills GB, Myers JN (2005) The Akt inhibitor KP372–1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells. Br J Cancer 92:1899–1905

    Article  CAS  PubMed  Google Scholar 

  52. Groszer M, Erickson R, Scripture-Adams DD, Dougherty JD, Le Belle J et al (2006) PTEN negatively regulates neural stem cell self-renewal by modulating G0–G1 cell cycle entry. Proc Natl Acad Sci USA 103:111–116

    Article  CAS  PubMed  Google Scholar 

  53. Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM, Eberhart CG (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66:7445–7452

    Article  CAS  PubMed  Google Scholar 

  54. Platet N, Liu SY, Atifi ME, Oliver L, Vallette FM, Berger F, Wion D (2007) Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett 258:286–290

    Article  CAS  PubMed  Google Scholar 

  55. Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF et al (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–375

    Article  CAS  PubMed  Google Scholar 

  56. Ogden AT, Waziri AE, Lochhead RA, Fusco D, Lopez K et al (2008) Identification of A2B5+ CD133 tumor-initiating cells in adult human gliomas. Neurosurgery 62:505–514

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru-Bin Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 503 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, RB., Ma, RJ., Wang, ZK. et al. PTEN status is related to cell proliferation and self-renewal independent of CD133 phenotype in the glioma-initiating cells. Mol Cell Biochem 349, 149–157 (2011). https://doi.org/10.1007/s11010-010-0669-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0669-1

Keywords

Navigation