Skip to main content
Log in

Spatial and temporal expression of hypoxia-inducible factor-1α during myogenesis in vivo and in vitro

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We investigated the spatial and temporal expression patterns of hypoxia-inducible factor-1α (HIF-1α) during muscle regeneration and myogenesis in a C2C12 cell culture system. The expression of HIF-1α synchronized with that of myogenic regulatory genes during muscle regeneration at both the mRNA and protein levels. The HIF-1α protein was localized in the nuclei of newly formed regenerating myofibers in three different muscle injury models, including freezing, bupivacaine injection, and muscular dystrophy. In myogenic cell culture, the HIF-1α protein was localized in the nucleus and cytoplasm of the majority of myoblasts and myotubes. HIF-1α protein expression decreased concomitant with the increased expression of MyoD and myogenin proteins after the induction of myogenic differentiation. We investigated the adaptive response of myoblasts to hypoxia-like conditions induced by treatment of cobalt chloride. This treatment allowed HIF-1α to accumulate and translocate to the nucleus to activate transcription of its target genes, suggesting that myoblasts adapted to acute hypoxia-like conditions through enhancing an HIF-1-dependent pathway. Our results provide insight into the possible involvement of HIF-1α in myogenesis in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578

    Article  CAS  PubMed  Google Scholar 

  2. Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem 272:19253–19260

    Article  CAS  PubMed  Google Scholar 

  3. Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480

    CAS  PubMed  Google Scholar 

  4. Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW (2004) Hypoxia-inducible factor (HIF-1) alpha: its protein stability and biological functions. Exp Mol Med 36:1–12

    PubMed  Google Scholar 

  5. Salceda S, Caro J (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272:22642–22647

    Article  CAS  PubMed  Google Scholar 

  6. Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992

    Article  CAS  PubMed  Google Scholar 

  7. Kallio PJ, Wilson WJ, O’Brien S, Makino Y, Poellinger L (1999) Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem 274:6519–6525

    Article  CAS  PubMed  Google Scholar 

  8. Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DA, Bauer C, Gassmann M, Candinas D (2001) HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J 15:2445–2453

    CAS  PubMed  Google Scholar 

  9. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12:149–162

    Article  CAS  PubMed  Google Scholar 

  10. Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol 191:381–396

    Article  CAS  PubMed  Google Scholar 

  11. Mason SD, Howlett RA, Kim MJ, Olfert IM, Hogan MC, McNulty W, Hickey RP, Wagner PD, Kahn CR, Giordano FJ, Johnson RS (2004) Loss of skeletal muscle HIF-1alpha results in altered exercise endurance. PLoS Biol 2:e288

    Article  PubMed  Google Scholar 

  12. Yun Z, Lin Q, Giaccia AJ (2005) Adaptive myogenesis under hypoxia. Mol Cell Biol 25:3040–3055

    Article  CAS  PubMed  Google Scholar 

  13. Ono Y, Sensui H, Sakamoto Y, Nagatomi R (2006) Knockdown of hypoxia-inducible factor-1alpha by siRNA inhibits C2C12 myoblast differentiation. J Cell Biochem 98:642–649

    Article  CAS  PubMed  Google Scholar 

  14. Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  PubMed  Google Scholar 

  15. Lu QL, Rabinowitz A, Chen YC, Yokota T, Yin H, Alter J, Jadoon A, Bou-Gharios G, Partridge T (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci USA 102:198–203

    Article  CAS  PubMed  Google Scholar 

  16. Warren GL, Hulderman T, Jensen N, McKinstry M, Mishra M, Luster MI, Simeonova PP (2002) Physiological role of tumor necrosis factor alpha in traumatic muscle injury. FASEB J 16:1630–1632

    CAS  PubMed  Google Scholar 

  17. Wagatsuma A, Tamaki H, Ogita F (2006) Sequential expression of vascular endothelial growth factor, Flt-1, and KDR/Flk-1 in regenerating mouse skeletal muscle. Physiol Res 55:633–640

    CAS  PubMed  Google Scholar 

  18. Wagatsuma A (2007) Endogenous expression of angiogenesis-related factors in response to muscle injury. Mol Cell Biochem 298:151–159

    Article  CAS  PubMed  Google Scholar 

  19. Benoit PW, Belt WD (1970) Destruction and regeneration of skeletal muscle after treatment with a local anaesthetic, bupivacaine (marcaine). J Anat 107:547–556

    CAS  PubMed  Google Scholar 

  20. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    Article  CAS  PubMed  Google Scholar 

  21. Pisani DF, Dechesne CA (2005) Skeletal muscle HIF-1alpha expression is dependent on muscle fiber type. J Gen Physiol 126:173–178

    Article  CAS  PubMed  Google Scholar 

  22. Sarig R, Baruchi Z, Fuchs O, Nudel U, Yaffe D (2006) Regeneration and transdifferentiation potential of muscle-derived stem cells propagated as myospheres. Stem Cells 24:1769–1778

    Article  PubMed  Google Scholar 

  23. Yablonka-Reuveni Z, Anderson JE (2006) Satellite cells from dystrophic (mdx) mice display accelerated differentiation in primary cultures and in isolated myofibers. Dev Dyn 235:203–212

    Article  CAS  PubMed  Google Scholar 

  24. Gharaibeh B, Lu A, Tebbets J, Zheng B, Feduska J, Crisan M, Péault B, Cummins J, Huard J (2008) Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat Protoc 3:1501–1509

    Article  CAS  PubMed  Google Scholar 

  25. Simpson DA, Feeney S, Boyle C, Stitt AW (2000) Retinal VEGF mRNA measured by SYBR green I fluorescence: a versatile approach to quantitative PCR. Mol Vis 6:178–183

    CAS  PubMed  Google Scholar 

  26. Shih SC, Robinson GS, Perruzzi CA, Calvo A, Desai K, Green JE, Ali IU, Smith LE, Senger DR (2002) Molecular profiling of angiogenesis markers. Am J Pathol 161:35–41

    CAS  PubMed  Google Scholar 

  27. Anderson LV, Davison K (1999) Multiplex western blotting system for the analysis of muscular dystrophy proteins. Am J Pathol 154:1017–1022

    CAS  PubMed  Google Scholar 

  28. Yamashita S, Okada Y (2005) Application of heat-induced antigen retrieval to aldehyde-fixed fresh frozen sections. J Histochem Cytochem 53:1421–1432

    Article  CAS  PubMed  Google Scholar 

  29. Kallio PJ, Okamoto K, O’Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J 17:6573–6586

    Article  CAS  PubMed  Google Scholar 

  30. Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlacht BD (2005) An initial blueprint for myogenic differentiation. Genes Dev 19:553–569

    Article  CAS  PubMed  Google Scholar 

  31. Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8:588–594

    Article  CAS  PubMed  Google Scholar 

  32. Yuan Y, Hilliard G, Ferguson T, Millhorn DE (2003) Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel–Lindau protein by direct binding to hypoxia-inducible factor-alpha. J Biol Chem 278:15911–15916

    Article  CAS  PubMed  Google Scholar 

  33. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    CAS  PubMed  Google Scholar 

  34. Nonaka I, Takagi A, Ishiura S, Nakase H, Sugita H (1983) Pathophysiology of muscle fiber necrosis induced by bupivacaine hydrochloride (marcaine). Acta Neuropathol 60:167–174

    Article  CAS  PubMed  Google Scholar 

  35. McArdle A, Edwards RH, Jackson MJ (1995) How does dystrophin deficiency lead to muscle degeneration?—evidence from the mdx mouse. Neuromuscular Disord 5:445–456

    Article  CAS  Google Scholar 

  36. Couffinhal T, Silver M, Zheng LP, Kearney M, Witzenbichler B, Isner JM (1998) Mouse model of angiogenesis. Am J Pathol 152:1667–1679

    CAS  PubMed  Google Scholar 

  37. Rissanen TT, Vajanto I, Hiltunen MO, Rutanen J, Kettunen MI, Niemi M, Leppänen P, Turunen MP, Markkanen JE, Arve K, Alhava E, Kauppinen RA, Ylä-Herttuala S (2002) Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 (KDR/Flk-1) in ischemic skeletal muscle and its regeneration. Am J Pathol 160:1393–1403

    CAS  PubMed  Google Scholar 

  38. Germani A, Di Carlo A, Mangoni A, Straino S, Giacinti C, Turrini P, Biglioli P, Capogrossi MC (2003) Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol 163:1417–1428

    CAS  PubMed  Google Scholar 

  39. Tuomisto TT, Rissanen TT, Vajanto I, Korkeela A, Rutanen J, Ylä-Herttuala S (2004) HIF-VEGF-VEGFR-2, TNF-alpha and IGF pathways are upregulated in critical human skeletal muscle ischemia as studied with DNA array. Atherosclerosis 174:111–120

    Article  CAS  PubMed  Google Scholar 

  40. Messina S, Mazzeo A, Bitto A, Aguennouz M, Migliorato A, De Pasquale MG, Minutoli L, Altavilla D, Zentilin L, Giacca M, Squadrito F, Vita G (2007) VEGF overexpression via adeno-associated virus gene transfer promotes skeletal muscle regeneration and enhances muscle function in mdx mice. FASEB J 21:3737–3746

    Article  CAS  PubMed  Google Scholar 

  41. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    Article  CAS  PubMed  Google Scholar 

  42. Ho TK, Rajkumar V, Ponticos M, Leoni P, Black DC, Abraham DJ, Baker DM (2006) Increased endogenous angiogenic response and hypoxia-inducible factor-1alpha in human critical limb ischemia. J Vasc Surg 43:125–133

    Article  PubMed  Google Scholar 

  43. Dehne N, Kerkweg U, Otto T, Fandrey J (2007) The HIF-1 response to simulated ischemia in mouse skeletal muscle cells neither enhances glycolysis nor prevents myotube cell death. Am J Physiol 293:R1693–R1701

    CAS  Google Scholar 

  44. Matsuki N, Inaba M, Ono K (2002) Catabolism of cytoplasmic and intramitochondrial adenine nucleotides in C2C12 skeletal myotube under chemical hypoxia. J Vet Med Sci 64:341–347

    Article  CAS  PubMed  Google Scholar 

  45. Schroedl NA, Funanage VL, Bacon CR, Smith SM, Hartzell CR (1998) Hemin increases aerobic capacity of cultured regenerating skeletal myotubes. Am J Physiol 255:C519–C525

    Google Scholar 

  46. Ciafrè SA, Niola F, Giorda E, Farace MG, Caporossi D (2007) CoCl(2)-simulated hypoxia in skeletal muscle cell lines: role of free radicals in gene up-regulation and induction of apoptosis. Free Radic Res 41:391–401

    Article  PubMed  Google Scholar 

  47. Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9:617–628

    Article  CAS  PubMed  Google Scholar 

  48. Nofziger D, Miyamoto A, Lyons KM, Weinmaster G (1999) Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development 126:1689–1702

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grant-in Aid for Scientific Research (C) from the Japan Society for the promotion of Science (Grant no. 22500658 to A.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Wagatsuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagatsuma, A., Kotake, N. & Yamada, S. Spatial and temporal expression of hypoxia-inducible factor-1α during myogenesis in vivo and in vitro. Mol Cell Biochem 347, 145–155 (2011). https://doi.org/10.1007/s11010-010-0622-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0622-3

Keywords

Navigation