Skip to main content

Advertisement

Log in

Mass spectrometry and biochemical analysis of RNA polymerase II: targeting by protein phosphatase-1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Transcription of eukaryotic genes is regulated by phosphorylation of serine residues of heptapeptide repeats of the carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII). We previously reported that protein phosphatase-1 (PP1) dephosphorylates RNAPII CTD in vitro and inhibition of nuclear PP1-blocked viral transcription. In this article, we analyzed the targeting of RNAPII by PP1 using biochemical and mass spectrometry analysis of RNAPII-associated regulatory subunits of PP1. Immunoblotting showed that PP1 co-elutes with RNAPII. Mass spectrometry approach showed the presence of U2 snRNP. Co-immunoprecipitation analysis points to NIPP1 and PNUTS as candidate regulatory subunits. Because NIPP1 was previously shown to target PP1 to U2 snRNP, we analyzed the effect of NIPP1 on RNAPII phosphorylation in cultured cells. Expression of mutant NIPP1 promoted RNAPII phosphorylation suggesting that the deregulation of cellular NIPP1/PP1 holoenzyme affects RNAPII phosphorylation and pointing to NIPP1 as a potential regulatory factor in RNAPII-mediated transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dahmus ME (1996) Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J Biol Chem 271:19009–19012

    CAS  PubMed  Google Scholar 

  2. Majello B, Napolitano G (2001) Control of RNA polymerase II activity by dedicated CTD kinases and phosphatases. Front Biosci 6:D1358–D1368

    Article  CAS  PubMed  Google Scholar 

  3. Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H (1999) NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97:41–51

    Article  CAS  PubMed  Google Scholar 

  4. Kobor MS, Archambault J, Lester W, Holstege FC, Gileadi O, Jansma DB, Jennings EG, Kouyoumdjian F, Davidson AR, Young RA, Greenblatt J (1999) An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae. Mol Cell 4:55–62

    Article  CAS  PubMed  Google Scholar 

  5. Chambers RS, Dahmus ME (1994) Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terminal domain of RNA polymerase II. J Biol Chem 269:26243–26248

    CAS  PubMed  Google Scholar 

  6. Hausmann S, Vivares CP, Shuman S (2002) Characterization of the mRNA capping apparatus of the microsporidian parasite Encephalitozoon cuniculi. J Biol Chem 277:96–103

    Article  CAS  PubMed  Google Scholar 

  7. Lin PS, Marshall NF, Dahmus ME (2002) CTD phosphatase: role in RNA polymerase II cycling and the regulation of transcript elongation. Prog Nucleic Acid Res Mol Biol 72:333–365

    Article  CAS  PubMed  Google Scholar 

  8. Cho EJ, Kobor MS, Kim M, Greenblatt J, Buratowski S (2001) Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev 15:3319–3329

    Article  CAS  PubMed  Google Scholar 

  9. Cho H, Kim TK, Mancebo H, Lane WS, Flores O, Reinberg D (1999) A protein phosphatase functions to recycle RNA polymerase II. Genes Dev 13:1540–1552

    Article  CAS  PubMed  Google Scholar 

  10. Yeo M, Lin PS, Dahmus ME, Gill GN (2003) A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J Biol Chem 278:26078–26085

    Article  CAS  PubMed  Google Scholar 

  11. Yeo M, Lee SK, Lee B, Ruiz EC, Pfaff SL, Gill GN (2005) Small CTD phosphatases function in silencing neuronal gene expression. Science 307:596–600

    Article  CAS  PubMed  Google Scholar 

  12. Krishnamurthy S, He X, Reyes-Reyes M, Moore C, Hampsey M (2004) Ssu72 Is an RNA polymerase II CTD phosphatase. Mol Cell 14:387–394

    Article  CAS  PubMed  Google Scholar 

  13. Washington K, Ammosova T, Beullens M, Jerebtsova M, Kumar A, Bollen M, Nekhai S (2002) Protein phosphatase-1 dephosphorylates the C-terminal domain of RNA polymerase-II. J Biol Chem 277:40442–40448

    Article  CAS  PubMed  Google Scholar 

  14. Bollen M, Beullens M (2002) Signaling by protein phosphatases in the nucleus. Trends Cell Biol 12:138–145

    Article  CAS  PubMed  Google Scholar 

  15. Dubois MF, Bellier S, Seo SJ, Bensaude O (1994) Phosphorylation of the RNA polymerase II largest subunit during heat shock and inhibition of transcription in HeLa cells. J Cell Physiol 158:417–426

    Article  CAS  PubMed  Google Scholar 

  16. Hendrickx A, Beullens M, Ceulemans H, Den Abt T, Van Eynde A, Nicolaescu E, Lesage B, Bollen M (2009) Docking motif-guided mapping of the interactome of protein phosphatase-1. Chem Biol 16:365–371

    Article  CAS  PubMed  Google Scholar 

  17. Cloutier P, Al-Khoury R, Lavallee-Adam M, Faubert D, Jiang H, Poitras C, Bouchard A, Forget D, Blanchette M, Coulombe B (2009) High-resolution mapping of the protein interaction network for the human transcription machinery and affinity purification of RNA polymerase II-associated complexes. Methods 48:381–386

    Article  CAS  PubMed  Google Scholar 

  18. Zamore PD, Green MR (1989) Identification, purification, and biochemical characterization of U2 small nuclear ribonucleoprotein auxiliary factor. Proc Natl Acad Sci U S A 86:9243–9247

    Article  CAS  PubMed  Google Scholar 

  19. Tran HT, Ulke A, Morrice N, Johannes CJ, Moorhead GB (2004) Proteomic characterization of protein phosphatase complexes of the mammalian nucleus. Mol Cell Proteomics 3:257–265

    Article  CAS  PubMed  Google Scholar 

  20. Boudrez A, Beullens M, Waelkens E, Stalmans W, Bollen M (2002) Phosphorylation-dependent interaction between the splicing factors SAP155 and NIPP1. J Biol Chem 277:31834–31841

    Article  CAS  PubMed  Google Scholar 

  21. Tanuma N, Kim SE, Beullens M, Tsubaki Y, Mitsuhashi S, Nomura M, Kawamura T, Isono K, Koseki H, Sato M, Bollen M, Kikuchi K, Shima H (2008) Nuclear inhibitor of protein phosphatase-1 (NIPP1) directs protein phosphatase-1 (PP1) to dephosphorylate the U2 small nuclear ribonucleoprotein particle (snRNP) component, spliceosome-associated protein 155 (Sap155). J Biol Chem 283:35805–35814

    Article  CAS  PubMed  Google Scholar 

  22. Van Dessel N, Beke L, Görnemann J, Minnebo N, Beullens M, Tanuma N, Shima H, Van Eynde A, Bollen M (2010) The phosphatase interactor NIPP1 regulates the occupancy of the histone methyltransferase EZH2 at Polycomb targets. Nucleic Acids Res. doi:10.1093/nar/gkq643

  23. Landsverk HB, Kirkhus M, Bollen M, Kuntziger T, Collas P (2005) PNUTS enhances in vitro chromosome decondensation in a PP1-dependent manner. Biochem J 390:709–717

    Article  CAS  PubMed  Google Scholar 

  24. Ammosova T, Jerebtsova M, Beullens M, Voloshin Y, Ray PE, Kumar A, Bollen M, Nekhai S (2003) Nuclear protein phosphatase-1 regulates HIV-1 transcription. J Biol Chem 278:32189–32194

    Article  CAS  PubMed  Google Scholar 

  25. Beullens M, Vulsteke V, Van Eynde A, Jagiello I, Stalmans W, Bollen M (2000) The C-terminus of NIPP1 (nuclear inhibitor of protein phosphatase-1) contains a novel binding site for protein phosphatase-1 that is controlled by tyrosine phosphorylation and RNA binding. Biochem J 352:651–658

    Article  CAS  PubMed  Google Scholar 

  26. Schwartz S, Meshorer E, Ast G (2009) Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 16:990–995

    Article  CAS  PubMed  Google Scholar 

  27. Pandit S, Wang D, Fu XD (2008) Functional integration of transcriptional and RNA processing machineries. Curr Opin Cell Biol 20:260–265

    Article  CAS  PubMed  Google Scholar 

  28. Egloff S, Murphy S (2008) Cracking the RNA polymerase II CTD code. Trends Genet 24:280–288

    Article  CAS  PubMed  Google Scholar 

  29. Sikorski TW, Buratowski S (2009) The basal initiation machinery: beyond the general transcription factors. Curr Opin Cell Biol 21:344–351

    Article  CAS  PubMed  Google Scholar 

  30. Kong SE, Kobor MS, Krogan NJ, Somesh BP, Sogaard TM, Greenblatt JF, Svejstrup JQ (2005) Interaction of Fcp1 phosphatase with elongating RNA polymerase II holoenzyme, enzymatic mechanism of action, and genetic interaction with elongator. J Biol Chem 280:4299–4306

    Article  CAS  PubMed  Google Scholar 

  31. Yang A, Abbott KL, Desjardins A, Di Lello P, Omichinski JG, Legault P (2009) NMR structure of a complex formed by the carboxyl-terminal domain of human RAP74 and a phosphorylated peptide from the central domain of the FCP1 phosphatase. Biochemistry 48:1964–1974

    Article  CAS  PubMed  Google Scholar 

  32. Yeo M, Lin PS (2007) Functional characterization of small CTD phosphatases. Methods Mol Biol 365:335–346

    PubMed  Google Scholar 

  33. Ceulemans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84:1–39

    Article  CAS  PubMed  Google Scholar 

  34. Lee JH, You J, Dobrota E, Skalnik DG (2010) Identification and characterization of a novel human PP1 phosphatase complex. J Biol Chem 285:24466–24476

    Article  CAS  PubMed  Google Scholar 

  35. Vulsteke V, Beullens M, Boudrez A, Keppens S, Van Eynde A, Rider MH, Stalmans W, Bollen M (2004) Inhibition of spliceosome assembly by the cell cycle-regulated protein kinase MELK and involvement of splicing factor NIPP1. J Biol Chem 279:8642–8647

    Article  CAS  PubMed  Google Scholar 

  36. Roy N, Van Eynde A, Beke L, Nuytten M, Bollen M (2007) The transcriptional repression by NIPP1 is mediated by Polycomb group proteins. Biochim Biophys Acta 1769:541–545

    CAS  PubMed  Google Scholar 

  37. Brookes E, Pombo A (2009) Modifications of RNA polymerase II are pivotal in regulating gene expression states. EMBO Rep 10:1213–1219

    Article  CAS  PubMed  Google Scholar 

  38. Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21:744–749

    Article  CAS  PubMed  Google Scholar 

  39. Koshibu K, Graff J, Beullens M, Heitz FD, Berchtold D, Russig H, Farinelli M, Bollen M, Mansuy IM (2009) Protein phosphatase 1 regulates the histone code for long-term memory. J Neurosci 29:13079–13089

    Article  CAS  PubMed  Google Scholar 

  40. Lesage B, Beullens M, Nuytten M, Van Eynde A, Keppens S, Himpens B, Bollen M (2004) Interactor-mediated nuclear translocation and retention of protein phosphatase-1. J Biol Chem 279:55978–55984

    Article  CAS  PubMed  Google Scholar 

  41. Llorian M, Beullens M, Andres I, Ortiz JM, Bollen M (2004) SIPP1, a novel pre-mRNA splicing factor and interactor of protein phosphatase-1. Biochem J 378:229–238

    Article  CAS  PubMed  Google Scholar 

  42. Nekhai S, Bottaro DP, Woldehawariat G, Spellerberg A, Petryshyn R (2000) A cell-permeable peptide inhibits activation of PKR and enhances cell proliferation. Peptides 21:1449–1456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Department of Education and Science of Russian Federation grant No. 02.740.11.5032 from July 20th 2009. This study was also supported by NIH Research Grants 2 R25 HL003679-08 funded by the National Heart, Lung, and Blood Institute and The Office of Research on Minority Health; NIH 1SC1GM082325-01 from National Institute of General Medicine and RCMI-NIH 2G12RR003048 from the Research Centers in Minority Institutions (RCMI) Program (Division of Research Infrastructure, National Center for Research Resources, NIH). The authors thank Dr. Mathieu Bollen and Dr. Monique Beullens (Catholic University of Leuven, Belgium) for gifts of antibodies and NIPP1 expression vectors and for critical comments and suggestions. The authors would like to thank members of Dr. Victor Gordeuk’s laboratory at the Center for Sickle Cell Disease at Howard University for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Nekhai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jerebtsova, M., Klotchenko, S.A., Artamonova, T.O. et al. Mass spectrometry and biochemical analysis of RNA polymerase II: targeting by protein phosphatase-1. Mol Cell Biochem 347, 79–87 (2011). https://doi.org/10.1007/s11010-010-0614-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0614-3

Keywords

Navigation