Skip to main content
Log in

Endocrine disruptors provoke differential modulatory responses on androgen receptor and pregnane and xenobiotic receptor: potential implications in metabolic disorders

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A systematic comparison of the impact of some potential endocrine disruptors (EDs) on modulation of androgen receptor (AR) and pregnane and xenobiotic receptor (PXR) function was conducted in a multi-step analysis. Promoter–reporter-based transcription assays were performed in conjunction with receptor dynamic studies in living cells that helped implicating the suspected EDs for their deleterious effects. We demonstrate that most of the selected EDs not only inhibit AR transcriptional activity, but also alter its subcellular dynamics. Conversely, some of these anti-androgenic compounds were potent activator of xeno-sensing nuclear receptor, PXR. Interestingly, agonist-activated AR that associates with the mitotic chromatin fails to achieve this association when bound to anti-androgenic EDs. Conclusively, most EDs (except BCH) behaved like pure antagonist for AR while as agonist for PXR. Subsequent experiments with DDT treatment in mice model indicated that in testis AR and its regulated genes PEM and ODC levels are down-regulated, whereas in liver of same mice PEM is up-regulated while AR and ODC remain unchanged. On the contrary, PXR and its regulated genes CYP3A11 and MDR1 levels in mice liver were up-regulated while in testis PXR remained unchanged, CYP3A11 up-regulated and MDR1 were down-regulated. Based on a novel “Biopit” concept it is speculated that long-term exposure to endocrine disrupting chemicals may influence the epigenetic profile of target cells via transcription factors thereby making them vulnerable to onset of chemically induced endocrine-related malignancies or metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roy AK, Tyagi RK, Song CS, Lavrovsky Y, Ahn SC, Oh TS, Chatterjee B (2001) Androgen receptor: structural domains and functional dynamics after ligand-receptor interaction. Ann NY Acad Sci 949:44–57

    Article  PubMed  CAS  Google Scholar 

  2. Bagchi G, Moniri NH, Daaka Y (2006) Androgen receptor. UCSD-Nature Molecule Pages. doi:10.1038/mp.a003790.01

  3. Dehm SM, Tindall DJ (2007) Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol 21:2855–2863

    Article  PubMed  CAS  Google Scholar 

  4. Tyagi RK, Lavrovsky Y, Ahn SC, Song CS, Chatterjee B, Roy AK (2000) Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol Endocrinol 14:1162–1174

    Article  PubMed  CAS  Google Scholar 

  5. Black BE, Paschal BM (2004) Intranuclear organization and function of the androgen receptor. Trends Endocrinol Metab 15:411–417

    PubMed  CAS  Google Scholar 

  6. Kumar S, Saradhi M, Chaturvedi NK, Tyagi RK (2006) Intracellular localization and nucleocytoplasmic trafficking of steroid receptors: an overview. Mol Cell Endocrinol 246:147–156

    Article  PubMed  CAS  Google Scholar 

  7. Berrevoets CA, Umar A, Brinkmann AO (2002) Antiandrogens: selective androgen receptor modulators. Mol Cell Endocrinol 198:97–103

    Article  PubMed  CAS  Google Scholar 

  8. Wang L, Hsu CL, Chang C (2005) Androgen receptor corepressors: an overview. Prostate 63:117–130

    Article  PubMed  CAS  Google Scholar 

  9. Heemers HV, Tindall DJ (2007) Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 28:778–808

    Article  PubMed  CAS  Google Scholar 

  10. Kumar S, Chaturvedi NK, Kumar S, Tyagi RK (2008) Agonist-mediated docking of androgen receptor onto the mitotic chromatin platform discriminates intrinsic mode of action of prostate cancer drugs. Biochim Biophys Acta 1783:59–73

    Article  PubMed  CAS  Google Scholar 

  11. Saradhi M, Sengupta A, Mukhopadhyay G, Tyagi RK (2005) Pregnane and xenobiotic receptor (PXR) resides predominantly in the nuclear compartment of the interphase cell and associates with the condensed chromosomes during mitosis. Biochim Biophys Acta 1746:85–94

    Article  PubMed  CAS  Google Scholar 

  12. Saradhi M, Kumar N, Reddy RC, Tyagi RK (2006) Pregnane and xenobiotic receptor (PXR): a promiscuous xenosensor with a role in human health and disease. J Endocrinol Reprod 10:1–12

    Google Scholar 

  13. Matic M, Mahns A, Tsoli M, Corradin A, Polly P, Robertson GR (2007) Pregnane X receptor: promiscuous regulator of detoxification pathways. Int J Biochem Cell Biol 39:478–483

    Article  PubMed  CAS  Google Scholar 

  14. Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, McKee DD, Oliver BB, Willson TM, Zetterström RH, Perlmann T, Lehmann JM (1998) An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92:73–82

    Article  PubMed  CAS  Google Scholar 

  15. Blumberg B, Sabbagh W Jr, Juguilon H, Bolado J Jr, Van Meterc M, Ong ES, Evans RM (1998) SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev 12:3195–3205

    Article  PubMed  CAS  Google Scholar 

  16. Orans J, Teotico DG, Redinbo MR (2005) The nuclear xenobiotic receptor pregnane X receptor: recent insights and new challenges. Mol Endocrinol 19:2891–2900

    Article  PubMed  CAS  Google Scholar 

  17. Stanley LA, Horsburgh BC, Ross J, Scheer N, Wolf CR (2006) PXR and CAR: nuclear receptors which play a pivotal role in drug disposition and chemical toxicity. Drug Metab Rev 38:515–597

    Article  PubMed  CAS  Google Scholar 

  18. Ogino M, Nagata K, Yamazoe Y (2002) Selective suppressions of human CYP3A forms, CYP3A5 and CYP3A7 by troglitazone in HepG2 cells. Drug Metab Pharmacokinet 17:42–46

    Article  PubMed  CAS  Google Scholar 

  19. Goodwin B, Hodgson E, Liddle C (1999) The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol Pharmacol 56:1329–1339

    PubMed  CAS  Google Scholar 

  20. Wrighton SA, Schuetz EG, Thummel KE, Shen DD, Korzekwa KR, Watkins PB (2000) The human CYP3A subfamily: practical considerations. Drug Metab Rev 32:339–361

    Article  PubMed  CAS  Google Scholar 

  21. Moore LB, Goodwin B, Jones SA, Wisely GB, Serabijt-Singh CJ, Willson TM, Collins JL, Kliewer SA (2000) St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci USA 97:7500–7502

    Article  PubMed  CAS  Google Scholar 

  22. Huang H, Wang H, Sinz M, Zoeckler M, Staudinger J, Redinbo MR, Teotico DG, Locker J, Kalpana GV, Mani S (2007) Inhibition of drug metabolism by blocking the activation of nuclear receptors by ketoconazole. Oncogene 26:258–268

    Article  PubMed  CAS  Google Scholar 

  23. Zhou C, Poulton EJ, Grun F, Bammler TK, Blumberg B, Thummel KE, Eaton DL (2007) The dietary isothiocyanate sulforaphane is an antagonist of the human steroid and xenobiotic nuclear receptor. Mol Pharmacol 71:220–229

    Article  PubMed  CAS  Google Scholar 

  24. Ekins S, Kholodovych V, Ai N, Sinz M, Gal J, Gera L, Welsh WJ, Bachmann K, Mani S (2008) Computational discovery of novel low micromolar human pregnane X receptor antagonists. Mol Pharmacol 74:662–672

    Article  PubMed  CAS  Google Scholar 

  25. Wang H, Li H, Moore LB, Johnson MD, Maglich JM, Goodwin B, Ittoop OR, Wisely B, Creech K, Parks DJ, Collins JL, Willson TM, Kalpana GV, Venkatesh M, Xie W, Cho SY, Roboz J, Redinbo M, Moore JT, Mani S (2008) The phytoestrogen coumestrol is a naturally occurring antagonist of the human pregnane X receptor. Mol Endocrinol 22:838–857

    Article  PubMed  CAS  Google Scholar 

  26. Biswas A, Mani S, Redinbo MR, Krasowski MD, Li H, Ekins S (2009) Elucidating the ‘Jekyll and Hyde’ nature of PXR: the case for discovering antagonists or allosteric antagonists. Pharm Res 26:1807–1815

    Article  PubMed  CAS  Google Scholar 

  27. Kliewer SA (2005) Pregnane X receptor: predicting and preventing drug interactions. Thromb Res 117:133–136

    Article  PubMed  CAS  Google Scholar 

  28. Staudinger JL, Ding X, Lichti K (2006) Pregnane X receptor and natural products: beyond drug–drug interactions. Expert Opin Drug Metab Toxicol 2:847–857

    Article  PubMed  CAS  Google Scholar 

  29. Tirona RG, Lee W, Leake BF, Lan LB, Cline CB, Lamba V, Parviz F, Duncan A, Inoue Y, Gonzalez FJ, Schuetz EG, Kim RB (2003) The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nat Med 9:220–224

    Article  PubMed  CAS  Google Scholar 

  30. Chen Y, Kissling G, Negishi M, Goldstein JA (2005) The nuclear receptors constitutive androstane receptor and pregnane X receptor cross-talk with hepatic nuclear factor 4alpha to synergistically activate the human CYP2C9 promoter. J Pharmacol Exp Ther 314:1125–1133

    Article  PubMed  CAS  Google Scholar 

  31. Zhou C, Tabb MM, Nelson EL, Grün F, Verma S, Sadatrafiei A, Lin M, Mallick S, Forman BM, Thummel KE, Blumberg B (2006) Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation. J Clin Invest 116:2280–2289

    Article  PubMed  CAS  Google Scholar 

  32. Mnif W, Pascussi JM, Pillon A, Escande A, Bartegi A, Nicolas JC, Cavaillès V, Duchesne MJ, Balaguer P (2007) Estrogens and antiestrogens activate hPXR. Toxicol Lett 170:19–29

    Article  PubMed  CAS  Google Scholar 

  33. Zhou C, Verma S, Blumberg B (2009) The steroid and xenobiotic receptor (SXR), beyond xenobiotic metabolism. Nucl Recept Signal 7:e001

    PubMed  Google Scholar 

  34. Lim YP, Huang JD (2008) Interplay of pregnane X receptor with other nuclear receptors on gene regulation. Drug Metab Pharmacokinet 23:14–21

    Article  PubMed  CAS  Google Scholar 

  35. Konno Y, Kodama S, Moore R, Kamiya N, Negishi M (2009) Nuclear xenobiotic receptor pregnane X receptor locks corepressor silencing mediator for retinoid and thyroid hormone receptors (SMRT) onto the CYP24A1 promoter to attenuate vitamin D3 activation. Mol Pharmacol 75:265–271

    Article  PubMed  CAS  Google Scholar 

  36. Kumar S, Jaiswal B, Kumar S, Negi S, Tyagi RK (2010) Cross-talk between androgen receptor and pregnane and xenobiotic receptor reveals existence of a novel modulatory action of antiandrogenic drugs. Biochem Pharmacol 80:964–976

    Article  PubMed  CAS  Google Scholar 

  37. Masuyama H, Hiramatsu Y, Kodama J, Kudo T (2003) Expression and potential roles of pregnane X receptor in endometrial cancer. J Clin Endocrinol Metab 88:4446–4454

    Article  PubMed  CAS  Google Scholar 

  38. Chen Y, Tang Y, Wang MT, Zeng S, Nie D (2007) Human pregnane X receptor and resistance to chemotherapy in prostate cancer. Cancer Res 67:10361–10367

    Article  PubMed  CAS  Google Scholar 

  39. Masuyama H, Nakatsukasa H, Takamoto N, Hiramatsu Y (2007) Down-regulation of pregnane X receptor contributes to cell growth inhibition and apoptosis by anticancer agents in endometrial cancer cells. Mol Pharmacol 72:1045–1053

    Article  PubMed  CAS  Google Scholar 

  40. Gupta D, Venkatesh M, Wang H, Kim S, Sinz M, Goldberg GL, Whitney K, Longley C, Mani S (2008) Expanding the roles for pregnane X receptor in cancer: proliferation and drug resistance in ovarian cancer. Clin Cancer Res 14:5332–5340

    Article  PubMed  CAS  Google Scholar 

  41. Moreau A, Vilarem MJ, Maurel P, Pascussi JM (2008) Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response. Mol Pharm 5:35–41

    Article  PubMed  CAS  Google Scholar 

  42. Verma S, Tabb MM, Blumberg B (2009) Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells. BMC Cancer 5:3–9

    Article  CAS  Google Scholar 

  43. Raynal C, Pascussi JM, Leguelinel G, Breuker C, Kantar J, Lallemant B, Poujol S, Bonnans C, Joubert D, Hollande F, Lumbroso S, Brouillet JP, Evrard A (2010) Pregnane X receptor (PXR) expression in colorectal cancer cells restricts irinotecan chemosensitivity through enhanced SN-38 glucuronidation. Mol Cancer 9:46

    Article  PubMed  CAS  Google Scholar 

  44. Takeyama D, Miki Y, Fujishima F, Suzuki T, Akahira J, Hata S, Miyata G, Satomi S, Sasano H (2010) Steroid and xenobiotic receptor in human esophageal squamous cell carcinoma: a potent prognostic factor. Cancer Sci 101:543–549

    Article  PubMed  CAS  Google Scholar 

  45. Satoh K, Nagai F, Aoki N (2001) Several environmental pollutants have binding affinities for both androgen receptor and estrogen receptor alpha. J Health Sci 47:495–501

    Article  CAS  Google Scholar 

  46. Ben-Shlomo I, Hsueh AJ (2005) Three’s company: two or more unrelated receptors pair with the same ligand. Mol Endocrinol 19:1009–1097

    Article  Google Scholar 

  47. Kelce WR, Wilson EM (1997) Environmental antiandrogens: development effects, molecular mechanisms, and clinical implications. J Mol Med 75:198–207

    Article  PubMed  CAS  Google Scholar 

  48. Gray LE Jr, Ostby J, Furr J, Wolf CJ, Lambright C, Parks L, Veeramachaneni DN, Wilson V, Price M, Hotchkiss A, Orlando E, Guillette L (2001) Effect of environmental antiandrogens on reproductive development in experimental animals. Hum Reprod Update 7:248–264

    Article  PubMed  CAS  Google Scholar 

  49. Irma M, Medina-Diaz EG (2005) Transcriptional induction of CYP3A4 by o, p′-DDT in HepG2 cells. Toxicol Lett 157:41–47

    Article  CAS  Google Scholar 

  50. Larsson A, Eriksson LA, Andersson PL, Ivarson P, Olsson PE (2006) Identification of the brominated flame retardant 1, 2-dibromo-4-(1, 2-dibromoethyl)cyclohexane as an androgen agonist. J Med Chem 49:7366–7372

    Article  PubMed  CAS  Google Scholar 

  51. Gore AC, Heindel JJ, Zoeller RT (2006) Endocrine disruption for endocrinologists (and others). Endocrinology 147:S1–S3

    Article  PubMed  CAS  Google Scholar 

  52. Guillette LJ Jr (2006) Endocrine disrupting contaminants-beyond the dogma. Environ Health Perspect 114:9–12

    Article  PubMed  Google Scholar 

  53. Janosek J, Hilscherová K, Bláha L, Holoubek I (2006) Environmental xenobiotics and nuclear receptors-interactions, effects and in vitro assessment. Toxicol In Vitro 20:18–37

    Article  PubMed  CAS  Google Scholar 

  54. Heindel JJ (2007) Role of exposure to environmental chemicals in the developmental basis of disease and dysfunction. Reprod Toxicol 23:257–259

    Article  PubMed  CAS  Google Scholar 

  55. Joffe M (2001) Are problems with male reproductive health caused by endocrine disruption? Occup Environ Med 58:281–287

    Article  PubMed  CAS  Google Scholar 

  56. Uzumcu M, Zachow R (2007) Developmental exposure to environmental endocrine disruptors: consequences within the ovary and on female reproductive function. Reprod Toxicol 23:337–352

    Article  PubMed  CAS  Google Scholar 

  57. Lathers CM (2002) Endocrine disruptors: a new scientific role for clinical pharmacologists? Impact on human health, wildlife, and the environment. J Clin Pharmacol 42:7–23

    Article  PubMed  CAS  Google Scholar 

  58. Safe S (2004) Endocrine disruptors and human health: is there a problem. Toxicology 205:3–10

    Article  PubMed  CAS  Google Scholar 

  59. Rogan WJ, Chen A (2005) Health risks and benefits of bis(4-chlorophenyl)-1, 1, 1-trichloroethane (DDT). Lancet 366:763–773

    Article  PubMed  CAS  Google Scholar 

  60. United States Environmental Protection Agency (1997) Special report on environmental endocrine disruption: an effects assessment and analysis. Office of Prevention, Pesticides and Toxic Substances, Washington

  61. Sultan C, Balaguer P, Terouanne B, Georget V, Paris F, Jeandel C, Lumbroso S, Nicolas JC (2001) Environmental xenoestrogens, antiandrogens, and disorders of male sexual differentiation. Mol Cell Endocrinol 178:99–105

    Article  PubMed  CAS  Google Scholar 

  62. Tabb MM, Blumberg B (2006) New modes of action for endocrine-disrupting chemicals. Mol Endocrinol 20:475–482

    Article  PubMed  CAS  Google Scholar 

  63. Kumar S, Chaturvedi NK, Nishi M, Kawata M, Tyagi RK (2004) Shuttling components of nuclear import machinery involved in nuclear translocation of steroid receptors exit nucleus via exportin-1/CRM-1 independent pathway. Biochim Biophys Acta 1691:73–77

    Article  PubMed  CAS  Google Scholar 

  64. Kojima H, Katsura E, Takeuchi S, Niiyama K, Kobayashi K (2004) Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environ Health Perspect 112:524–531

    Article  PubMed  CAS  Google Scholar 

  65. Araki N, Ohno K, Nakai M, Takeyoshi M, Iida M (2005) Screening for androgen receptor activities in 253 industrial chemicals by in vitro reporter gene assays using AR-EcoScreen cells. Toxicol In Vitro 19:831–842

    Article  PubMed  CAS  Google Scholar 

  66. Zhao CY, Zhang RS, Zhang HX, Xue CX, Liu HX, Liu MC, Hu ZD, Fan BT (2005) QSAR study of natural, synthetic and environmental endocrine disrupting compounds for binding to the androgen receptor. SAR QSAR Environ Res 16:349–3467

    Article  PubMed  CAS  Google Scholar 

  67. Berno V, Hinojos CA, Amazit L, Szafran AT, Mancini MA (2006) High-resolution, high-throughput microscopy analyses of nuclear receptor and coregulator function. Methods Enzymol 414:188–210

    Article  PubMed  CAS  Google Scholar 

  68. Pepperkok R, Ellenberg J (2006) High-throughput fluorescence microscopy for systems biology. Nat Rev Mol Cell Biol 7:690–696

    Article  PubMed  CAS  Google Scholar 

  69. Szafran AT, Szwarc M, Marcelli M, Mancini MA (2008) Androgen receptor functional analyses by high throughput imaging: determination of ligand, cell cycle, and mutation-specific effects. PLoS ONE 3:e3605

    Article  PubMed  CAS  Google Scholar 

  70. Jones JO, An WF, Diamond MI (2009) AR inhibitors identified by high-throughput microscopy detection of conformational change and subcellular localization. ACS Chem Biol 4:191–197

    Article  CAS  Google Scholar 

  71. Neurohr G, Gerlich DW (2009) Assays for mitotic chromosome condensation in live yeast and mammalian cells. Chromosome Res 17:145–154

    Article  PubMed  CAS  Google Scholar 

  72. Zhang S, Danielsen M (2001) Cotransfection assays and steroid receptor biology. Methods Mol Biol 176:297–316

    PubMed  CAS  Google Scholar 

  73. Lemaire G, de Sousa G, Rahmani R (2004) A PXR reporter gene assay in a stable cell culture system: CYP3A4 and CYP2B6 induction by pesticides. Biochem Pharmacol 68:2347–2358

    Article  PubMed  CAS  Google Scholar 

  74. Tyagi RK (2003) Dynamics of subcellular compartmentalization of steroid receptors in living cells as a strategic screening method to determine the biological impact of suspected endocrine disruptors. Med Hypotheses 60:501–504

    Article  PubMed  CAS  Google Scholar 

  75. Agler M, Prack M, Zhu Y, Kolb J, Nowak K, Ryseck R, Shen D, Cvijic ME, Somerville J, Nadler S, Chen T (2007) A high-content glucocorticoid receptor translocation assay for compound mechanism-of-action evaluation. J Biomol Screen 12:1029–1041

    Article  PubMed  CAS  Google Scholar 

  76. Tomura A, Goto K, Morinaga H, Nomura M, Okabe T, Yanase T, Takayanagi R, Nawata H (2001) The subnuclear three-dimensional image analysis of androgen receptor fused to green fluorescence protein. J Biol Chem 276:28395–28401

    Article  PubMed  CAS  Google Scholar 

  77. Chen D, Hinkley CS, Henry RW, Huang S (2002) TBP dynamics in living human cells: constitutive association of TBP with mitotic chromosomes. Mol Biol Cell 13:276–284

    Article  PubMed  CAS  Google Scholar 

  78. Gibson GG, Plant NJ, Swales KE, Ayrton A, El-Sankary W (2002) Receptor dependent transcriptional activation of cytochrome P450 3A genes: induction mechanisms, species differences and interindividual variation in man. Xenobiotica 32:165–206

    Article  PubMed  CAS  Google Scholar 

  79. Kretschmer XC, Baldwin WS (2005) CAR and PXR: xenosensors of endocrine disruptors? Chem Biol Interact 155:111–128

    Article  PubMed  CAS  Google Scholar 

  80. Levillain O, Diaz JJ, Blanchard O, Déchaud H (2005) Testosterone down-regulates ornithine aminotransferase gene and up-regulates arginase II and ornithine decarboxylase genes for polyamines synthesis in the murine kidney. Endocrinology 146:950–959

    Article  PubMed  CAS  Google Scholar 

  81. Vinggaard AM, Jacobsen H, Metzdorff SB, Andersen HR, Nellemann C (2005) Antiandrogenic effects in short-term in vivo studies of the fungicide fenarimol. Toxicology 207:21–34

    Article  PubMed  CAS  Google Scholar 

  82. Domanskyi A, Zhang FP, Nurmio M, Palvimo JJ, Toppari J, Jänne OA (2007) Expression and localization of androgen receptor-interacting protein-4 in the testis. Am J Physiol Endocrinol Metab 292:E513–E522

    Article  PubMed  CAS  Google Scholar 

  83. Shanker S, Hu Z, Wilkinson MF (2008) Epigenetic regulation and downstream targets of the Rhox5 homeobox gene. Int J Androl 31:462–470

    Article  PubMed  CAS  Google Scholar 

  84. Yanagimoto T, Itoh S, Muller-Enoch D, Kamataki T (1992) Mouse liver cytochrome P-450 (P-450IIIAM1): its cDNA cloning and inducibility by dexamethasone. Biochim Biophys Acta 130:329–332

    Google Scholar 

  85. Down MJ, Arkle S, Mills JJ (2007) Regulation and induction of CYP3A11, CYP3A13 and CYP3A25 in C57BL/6J mouse liver. Arch Biochem Biophys 457:105–110

    Article  PubMed  CAS  Google Scholar 

  86. Chen YH, Wang JP, Wang H, Sun MF, Wei LZ, Wei W, Xu DX (2005) Lipopolysaccharide treatment downregulates the expression of the pregnane X receptor, cyp3a11 and mdr1a genes in mouse placenta. Toxicology 211:242–252

    Article  PubMed  CAS  Google Scholar 

  87. Mottino AD, Catania VA (2008) Hepatic drug transporters and nuclear receptors: regulation by therapeutic agents. World J Gastroenterol 14:7068–7074

    Article  PubMed  CAS  Google Scholar 

  88. Yeap BB, Krueger RG, Leedman PJ (1999) Differential posttranscriptional regulation of androgen receptor gene expression by androgen in prostate and breast cancer cells. Endocrinology 140:3282–3291

    Article  PubMed  CAS  Google Scholar 

  89. Furutani T, Watanabe T, Tanimoto K, Hashimoto T, Koutoku H, Kudoh M, Shimizu Y, Kato S, Shikama H (2002) Stabilization of androgen receptor protein is induced by agonist, not by antagonists. Biochem Biophys Res Commun 294:779–784

    Article  PubMed  CAS  Google Scholar 

  90. Masuyama H, Inoshita H, Hiramatsu Y, Kudo T (2002) Ligands have various potential effects on the degradation of pregnane X receptor by proteasome. Endocrinology 143:55–61

    Article  PubMed  CAS  Google Scholar 

  91. Ma Y, Sachdeva K, Liu J, Song X, Li Y, Yang D, Deng R, Chichester CO, Yan B (2005) Clofibrate and perfluorodecanoate both upregulate the expression of the pregnane X receptor but oppositely affect its ligand-dependent induction on cytochrome P450 3A23. Biochem Pharmacol 69:1363–1371

    Article  PubMed  CAS  Google Scholar 

  92. Safe S, Papineni S (2006) The role of xenoestrogenic compounds in the development of breast cancer. Trends Pharmacol Sci 27:447–454

    Article  PubMed  CAS  Google Scholar 

  93. Sharpe RM (2006) Pathways of endocrine disruption during male sexual differentiation and masculinization. Best Pract Res Clin Endocrinol Metab 20:91–110

    Article  PubMed  CAS  Google Scholar 

  94. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  PubMed  CAS  Google Scholar 

  95. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  PubMed  CAS  Google Scholar 

  96. Anway MD, Stephen SR, Skinner MK (2008) Transgenerational epigenetic programming of the embryonic testis transcriptome. Genomics 91:30–40

    Article  PubMed  CAS  Google Scholar 

  97. Herceg Z (2007) Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis 22:91–103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research work presented in this study was financially supported by research grant to RKT from Council of Scientific and Industrial Research [CSIR, 37(1249)/06/EMR-II]. CSIR (NET) fellowship to Nagendra K. Chaturvedi, CSIR Senior Research fellowship (SRF) to Sanjay Kumar and CSIR project SRF to Seema Negi are gratefully acknowledged. Infrastructural and instrumentation facilities at AIRF-JNU and UGC-SAP support to our center are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaturvedi, N.K., Kumar, S., Negi, S. et al. Endocrine disruptors provoke differential modulatory responses on androgen receptor and pregnane and xenobiotic receptor: potential implications in metabolic disorders. Mol Cell Biochem 345, 291–308 (2010). https://doi.org/10.1007/s11010-010-0583-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0583-6

Keywords

Navigation