Skip to main content
Log in

Effects of ranolazine on fatty acid transformation in the isolated perfused rat liver

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

It has been proposed that in the heart, ranolazine shifts the energy source from fatty acids to glucose oxidation by inhibiting fatty acid oxidation. Up to now no mechanism for this inhibition has been proposed. The purpose of this study was to investigate if ranolazine also affects hepatic fatty acid oxidation, with especial emphasis on cell membrane permeation based on the observations that the compound interacts with biological membranes. The isolated perfused rat liver was used, and [1-14C]oleate transport was measured by means of the multiple-indicator dilution technique. Ranolazine inhibited net uptake of [1-14C]-oleate by impairing transport of this fatty acid. The compound also diminished the extra oxygen consumption and ketogenesis driven by oleate and the mitochondrial NADH/NAD+ ratio, but stimulated 14CO2 production. These effects were already significant at 20 μM ranolazine. Ranolazine also inhibited both oxygen consumption and ketogenesis driven by endogenous fatty acids in substrate-free perfused livers. In isolated mitochondria ranolazine inhibited acyl-CoA oxidation and β-hydroxybutyrate or α-ketoglutarate oxidation coupled to ADP phosphorylation. It was concluded that ranolazine inhibits fatty acid uptake and oxidation in the liver by at least two mechanisms: inhibition of cell membrane permeation and by an inhibition of the mitochondrial electron transfer via pyridine nucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anderson JR, Nawarskas JJ (2005) Ranolazine, a metabolic modulator for the treatment of chronic stable angina. Cardiol Rev 13:202–210

    Article  PubMed  Google Scholar 

  2. Clarke B, Spedding M, Patmore L, McCormack JG (1993) Protective effects of ranolazine in guinea-pig hearts during low-flow ischaemia and their association with increases in pyruvate dehydrogenase. Br J Pharmacol 109:748–750

    CAS  PubMed  Google Scholar 

  3. Clarke B, Wyatt KM, McCormack JG (1996) Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism. J Mol Cell Cardiol 28:341–350

    Article  CAS  PubMed  Google Scholar 

  4. McCormack JG, Barr RL, Wolff AA, Lopaschuk GD (1996) Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation 93:135–142

    CAS  PubMed  Google Scholar 

  5. Fragasso G (2007) Inhibition of free fatty acids metabolism as a therapeutic target in patients with heart failure. Int J Clin Pract 61:603–610

    Article  CAS  PubMed  Google Scholar 

  6. Marx S, Sweeney M (2006) Mechanism of action of ranolazine. Arch Intern Med 166:1325–1326

    Article  PubMed  Google Scholar 

  7. Hasenfuss G, Maier LS (2008) Mechanism of action of the new anti-ischemia drug ranolazine. Clin Res Cardiol 97:222–226

    Article  CAS  PubMed  Google Scholar 

  8. Aslam S, Gray D (2010) Ranolazine (Ranexa(R)) in the treatment of chronic stable angina. Adv Ther. doi:10.1007/s12325-010-0018-5

  9. Wang P, Fraser H, Lloyd SG, McVeigh JJ, Belardinelli L, Chatham JC (2007) A comparison between ranolazine and CVT-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion. J Pharmacol Exp Ther 321:213–220

    Article  CAS  PubMed  Google Scholar 

  10. Wyatt KM, Skene C, Veitch K, Hue L, McCormack JG (1995) The antianginal ranolazine is a weak inhibitor of the respiratory complex I, but with greater potency in broken or uncoupled than in coupled mitochondria. Biochem Pharmacol 50:1599–1606

    Article  CAS  PubMed  Google Scholar 

  11. Bernard R, Chaitman BR (2006) Ranolazine for the treatment of chronic angina and potential use in other cardiovascular conditions. Circulation 113:2462–2472

    Article  Google Scholar 

  12. Abdallah H, Jerling M (2005) Effect of hepatic impairment on the multiple-dose pharmacokinetics of ranolazine sustained-release tablets. J Clin Pharmacol 45:802–809

    Article  CAS  PubMed  Google Scholar 

  13. Goresky CA, Ziegler WH, Bach GG (1970) Capillary exchange modeling: barrier-limited and flow-limited distribution. Circ Res 27:739–764

    CAS  PubMed  Google Scholar 

  14. Ferraresi-Filho O, Ferraresi-Filho ML, Constantin J, Ishii-Iwamoto EL, Schwab AJ, Bracht A (1992) Transport and metabolism of palmitate in the perfused rat liver. Net fluxes and unidirectional fluxes across the cell membrane. Biochim Biophys Acta 1103:239–249

    Article  CAS  PubMed  Google Scholar 

  15. Derbocio AM, Lopez CH, Bracht L, Bracht A, Ishii-Iwamoto EL (2009) The action of zymosan on octanoate transport and metabolism in the isolated perfused rat liver. J Biochem Mol Toxicol 23:155–165

    Article  CAS  PubMed  Google Scholar 

  16. Scholz R, Bücher T (1965) Hemoglobin-free perfusion of rat liver. In: Chance B, Estabrook RW, Williamson JR (eds) Control of energy metabolism. Academic Press, New York, pp 393–414

    Google Scholar 

  17. Bracht A, Ishii-Iwamoto EL, Kelmer-Bracht AM (2003) O estudo do meta-bolismo no fígado em perfusão. In: Bracht A, Ishii-Iwamoto EL (eds) Métodos de Laboratório em Bioquímica. Manole, Barueri, pp 275–289

    Google Scholar 

  18. Dole VP, Meinertz H (1960) Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem 235:2595–2599

    CAS  PubMed  Google Scholar 

  19. Bergmeyer HU (1974) Methods of enzymatic analysis. Verlag Chemie, Weinheim

    Google Scholar 

  20. Scholz R, Schwabe U, Soboll S (1984) Influence of fatty acids on energy metabolism. 1. Stimulation of oxygen consumption, ketogenesis and CO2 production following addition of octanoate and oleate in perfused rat liver. Eur J Biochem 141:223–230

    Article  CAS  PubMed  Google Scholar 

  21. Voss DO, Campello AP, Bacila M (1961) The respiratory chain and the oxidative phosphorylation of rat brain mitochondria. Biochem Biophys Res Comm 4:48–51

    Article  CAS  PubMed  Google Scholar 

  22. Bracht A, Ishii-Iwamoto EL, Salgueiro-Pagadigorria CL (2003) O estudo do metabolismo energético em mitocôndrias isoladas de tecido animal. In: Bracht A, Ishii-Iwamoto EL (eds) Métodos de Laboratório em Bioquímica. Manole, Barueri, pp 227–247

    Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  24. Clark LC (1956) Monitor and control of blood and tissue oxygen tensions. Trans Am Soc Artif Intern Organs 2:41–48

    Google Scholar 

  25. Garland PB, Shepherd D, Nicholls DG, Yates DW, Light PA (1969) Interactions between fatty acid oxidation and the tricarboxylic acid cycle. In: Lowestein JM (ed) Citric acid cycle. Dekker, New York, pp 163–212

    Google Scholar 

  26. Chance B, Williams GR (1955) A simple and rapid assay of oxidative phosphorylation. Nature 175:1120–1121

    Article  CAS  PubMed  Google Scholar 

  27. Goresky CA, Daly DS, Mishkin S, Arias IM (1978) Uptake of labeled palmitate by the intact liver: role of intracellular binding sites. Am J Physiol 234:E542–E553

    CAS  PubMed  Google Scholar 

  28. Björck Å, Dahlquist G (1972) Numerische Methoden. R. Oldenburg, Munich

    Google Scholar 

  29. Goresky CA, Bach GC, Rose CP (1983) Effects of saturating metabolic uptake on space profiles and tracer kinetics. Am J Physiol 244:G215–G232

    CAS  PubMed  Google Scholar 

  30. Sies H (1982) Nicotinamide nucleotide compartmentation. In: Sies H (ed) Metabolic compartmentation. Academic Press, New York, pp 205–231

    Google Scholar 

  31. Soboll S, Scholz R, Heldt HW (1978) Subcellular metabolite concentrations. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused rat liver. Eur J Biochem 87:377–390

    Article  CAS  PubMed  Google Scholar 

  32. Abumrad NA, Perkins RC, Park JH, Parl CR (1981) Mechanism of long chain fatty acid permeation in the isolated adipocyte. J Biol Chem 256:9183–9191

    CAS  PubMed  Google Scholar 

  33. Ferraresi-Filho O, Ferraresi ML, Constantin J, Ishii EL, Schwab AJ, Bracht A (1988) Transport and metabolism of palmitate in the inact liver. Net flux and unidirectional fluxes across the cell membrane. FASEB J 2:A1524

    Google Scholar 

  34. Bonen A, Campbell SE, Benton CR, Chabowski A, Coort SL, Han XX, Koonen DP, Glatz JF, Luiken JJ (2004) Regulation of fatty acid transport by fatty acid translocase/CD36. Proc Nutr Soc 63:245–249

    Article  CAS  PubMed  Google Scholar 

  35. Pohl J, Ring A, Korkmaz U, Ehehalt R, Stremmel W (2005) FAT/CD36-mediated long-chain fatty acids uptake in adipocytes requires plasma membrane rafts. Mol Biol Cell 16:24–31

    Article  CAS  PubMed  Google Scholar 

  36. Pohl J, Ring A, Stremmel W (2002) Uptake of long-chain fatty acids in HepG2 cells involves caveolae: analysis of a novel pathway. J Lipid Res 43:1390–1399

    Article  CAS  PubMed  Google Scholar 

  37. Lopez-Cardozo M (1978) Regulation of ketogenesis in isolated liver mitochondria. In: Söling HD, Seufert CD (eds) Biochemical and clinical aspects of ketone body metabolism. Georg Thieme Publishers, Stuttgart, pp 41–49

    Google Scholar 

  38. Buss GD, Constantin J, Lima LCN, Teodoro GR, Comar JF, Ishii-Iwamoto EL, Bracht A (2005) The action of quercetin on the mitochondrial NADH do NAD+ ratio in the isolated perfused rat liver. Planta Med 71:1118–1122

    Article  CAS  PubMed  Google Scholar 

  39. Allely MC, Brown CM, Kenny BA, Kilpatrick AT, Martin A, Spedding M (1993) Modulation of α1-adrenoceptors in rat left ventricle by ischaemia and acyl carnitines: protection by ranolazine. J Cardiovasc Pharmacol 21:869–873

    Article  CAS  PubMed  Google Scholar 

  40. MacInnes A, Fairman DA, Binding P, Rhodes JA, Wyatt MJ, Phelan A, Haddock PS, Karran EH (2003) The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 93:e26–e32

    Article  CAS  PubMed  Google Scholar 

  41. Yamano K, Yamamoto K, Katashima M, Kotaki H, Takedomi S, Matsuo H, Ohtani H, Sawada Y, Iga T (2001) Prediction of midazolam—cyp3a inhibitors interaction in the human liver from in vivo/in vitro absorption, distribution, and metabolism data. Drug Metab Dispos 29:443–452

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and from the Programa Nacional de Núcleos de Excelência (PRONEX, Fundação Araucária-CNPq). The authors wish to thank the technical assistance of Celia Akemi Gasparetto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelar Bracht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mito, M.S., Constantin, J., de Castro, C.V. et al. Effects of ranolazine on fatty acid transformation in the isolated perfused rat liver. Mol Cell Biochem 345, 35–44 (2010). https://doi.org/10.1007/s11010-010-0557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0557-8

Keywords

Navigation