Skip to main content

Advertisement

Log in

The role of neurofibromin in N-Ras mediated AP-1 regulation in malignant peripheral nerve sheath tumors

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Plexiform neurofibromas commonly found in patients with Neurofibromatosis type I (NF1) have a 5% risk of being transformed into malignant peripheral nerve sheath tumors (MPNST). Germline mutations in the NF1 gene coding for neurofibromin, which is a Ras GTPase activating protein (RasGAP) and a negative regulator of Ras, result in an upregulation of the Ras pathway. We established a direct connection between neurofibromin deficiency and downstream effectors of Ras in cell lines from MPNST patients by demonstrating that knockdown of NF1 expression using siRNA in a NF1 wild type MPNST cell line, STS-26T, activates the Ras/ERK1,2 pathway and increases AP-1 binding and activity. We believe this is the first time the transactivation of AP-1 has been linked directly to neurofibromin deficiency in a disease relevant MPNST cell line. Previously, we have shown that N-Ras is constitutively activated in cell lines derived from independent MPNSTs from NF1 patients. We therefore sought to analyze the role of the N-Ras pathway in deregulating AP-1 transcriptional activity. We show that STS-26T clones conditionally expressing oncogenic N-Ras show increased phosphorylated ERK1,2 and phosphorylated JNK expression concomitant with increased AP-1 activity. MAP kinase pathways (ERK1,2 and JNK) were further examined in ST88-14, a neurofibromin-deficient MPNST cell line. The basal activity of ERK1,2 but not JNK was found to increase AP-1 activity. These experiments further confirmed the link between the loss of neurofibromin and increased activity of Ras/MAP kinase pathways and the activation of downstream transcriptional mechanisms in MPNSTs from NF1 patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Levy P, Vidaud D, Leroy K, Laurendeau I, Wechsler J, Bolasco G, Parfait B, Wolkenstein P, Vidaud M, Bieche I (2004) Molecular profiling of malignant peripheral nerve sheath tumors associated with neurofibromatosis type 1, based on large-scale real-time RT-PCR. Mol Cancer 3:20

    Article  PubMed  Google Scholar 

  2. DeClue JE, Papageorge AG, Fletcher JA, Diehl SR, Ratner N, Vass WC, Lowy DR (1992) Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69:265–273

    Article  CAS  PubMed  Google Scholar 

  3. Basu TN, Gutmann DH, Fletcher JA, Glover TW, Collins FS, Downward J (1992) Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356:713–715

    Article  CAS  PubMed  Google Scholar 

  4. Xu GF, O’Connell P, Viskochil D, Cawthon R, Robertson M, Culver M, Dunn D, Stevens J, Gesteland R, White R et al (1990) The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62:599–608

    Article  CAS  PubMed  Google Scholar 

  5. Gille H, Downward J (1999) Multiple ras effector pathways contribute to G(1) cell cycle progression. J Biol Chem 274:22033–22040

    Article  CAS  PubMed  Google Scholar 

  6. Pruitt K, Der CJ (2001) Ras and Rho regulation of the cell cycle and oncogenesis. Cancer Lett 171:1–10

    Article  CAS  PubMed  Google Scholar 

  7. Saxena N, Lahiri SS, Hambarde S, Tripathi RP (2008) RAS: target for cancer therapy. Cancer Invest 26:948–955

    Article  CAS  PubMed  Google Scholar 

  8. Liu JJ, Chao JR, Jiang MC, Ng SY, Yen JJ, Yang-Yen HF (1995) Ras transformation results in an elevated level of cyclin D1 and acceleration of G1 progression in NIH 3T3 cells. Mol Cell Biol 15:3654–3663

    CAS  PubMed  Google Scholar 

  9. Johnson R, Spiegelman B, Hanahan D, Wisdom R (1996) Cellular transformation and malignancy induced by ras require c-jun. Mol Cell Biol 16:4504–4511

    CAS  PubMed  Google Scholar 

  10. Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M (1991) Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354:494–496

    Article  CAS  PubMed  Google Scholar 

  11. Behrens A, Jochum W, Sibilia M, Wagner EF (2000) Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene 19:2657–2663

    Article  CAS  PubMed  Google Scholar 

  12. Brown PH, Alani R, Preis LH, Szabo E, Birrer MJ (1993) Suppression of oncogene-induced transformation by a deletion mutant of c-jun. Oncogene 8:877–886

    CAS  PubMed  Google Scholar 

  13. Young MR, Li JJ, Rincon M, Flavell RA, Sathyanarayana BK, Hunziker R, Colburn N (1999) Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. Proc Natl Acad Sci USA 96:9827–9832

    Article  CAS  PubMed  Google Scholar 

  14. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136

    Article  CAS  PubMed  Google Scholar 

  15. Shen Q, Uray IP, Li Y, Krisko TI, Strecker TE, Kim HT, Brown PH (2008) The AP-1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors. Oncogene 27:366–377

    Article  CAS  PubMed  Google Scholar 

  16. Bahassiel M, Karyala S, Tomlinson CR, Sartor MA, Medvedovic M, Hennigan RF (2004) Critical regulation of genes for tumor cell migration by AP-1. Clin Exp Metastasis 21:293–304

    Article  Google Scholar 

  17. Kim S, Choi JH, Kim JB, Nam SJ, Yang JH, Kim JH, Lee JE (2008) Berberine suppresses TNF-alpha-induced MMP-9 and cell invasion through inhibition of AP-1 activity in MDA-MB-231 human breast cancer cells. Molecules 13:2975–2985

    Article  CAS  PubMed  Google Scholar 

  18. Tan TW, Yang WH, Lin YT, Hsu SF, Li TM, Kao ST, Chen WC, Fong YC, Tang CH (2009) Cyr61 increases migration and MMP-13 expression via alphavbeta3 integrin, FAK, ERK and AP-1-dependent pathway in human chondrosarcoma cells. Carcinogenesis 30:258–268

    Article  CAS  PubMed  Google Scholar 

  19. Ye FC, Blackbourn DJ, Mengel M, Xie JP, Qian LW, Greene W, Yeh IT, Graham D, Gao SJ (2007) Kaposi’s sarcoma-associated herpesvirus promotes angiogenesis by inducing angiopoietin-2 expression via AP-1 and Ets1. J Virol 81:3980–3991

    Article  CAS  PubMed  Google Scholar 

  20. Matthews CP, Colburn NH, Young MR (2007) AP-1 a target for cancer prevention. Curr Cancer Drug Targets 7:317–324

    Article  CAS  PubMed  Google Scholar 

  21. Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868

    Article  CAS  PubMed  Google Scholar 

  22. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400

    Article  CAS  PubMed  Google Scholar 

  23. Zhu Y, Liao H, Wang N, Ma KS, Verna LK, Shyy JY, Chien S, Stemerman MB (2001) LDL-activated p38 in endothelial cells is mediated by Ras. Arterioscler Thromb Vasc Biol 21:1159–1164

    Article  CAS  PubMed  Google Scholar 

  24. Gille H, Sharrocks AD, Shaw PE (1992) Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 358:414–417

    Article  CAS  PubMed  Google Scholar 

  25. Clarke N, Arenzana N, Hai T, Minden A, Prywes R (1998) Epidermal growth factor induction of the c-jun promoter by a Rac pathway. Mol Cell Biol 18:1065–1073

    CAS  PubMed  Google Scholar 

  26. Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025–1037

    Article  CAS  PubMed  Google Scholar 

  27. Mattingly RR, Kraniak JM, Dilworth JT, Mathieu P, Bealmear B, Nowak JE, Benjamins JA, Tainsky MA, Reiners JJ Jr (2006) The mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor PD184352 (CI-1040) selectively induces apoptosis in malignant schwannoma cell lines. J Pharmacol Exp Ther 316:456–465

    Article  CAS  PubMed  Google Scholar 

  28. Wojtkowiak JW, Fouad F, LaLonde DT, Kleinman MD, Gibbs RA, Reiners JJ Jr, Borch RF, Mattingly RR (2008) Induction of apoptosis in neurofibromatosis type 1 malignant peripheral nerve sheath tumor cell lines by a combination of novel farnesyl transferase inhibitors and lovastatin. J Pharmacol Exp Ther 326:1–11

    Article  CAS  PubMed  Google Scholar 

  29. Barkan B, Starinsky S, Friedman E, Stein R, Kloog Y (2006) The Ras inhibitor farnesylthiosalicylic acid as a potential therapy for neurofibromatosis type 1. Clin Cancer Res 12:5533–5542

    Article  CAS  PubMed  Google Scholar 

  30. Yan N, Ricca C, Fletcher J, Glover T, Seizinger BR, Manne V (1995) Farnesyltransferase inhibitors block the neurofibromatosis type I (NF1) malignant phenotype. Cancer Res 55:3569–3575

    CAS  PubMed  Google Scholar 

  31. Dilworth JT, Wojtkowiak JW, Mathieu P, Tainsky MA, Reiners JJ Jr, Mattingly RR, Hancock CN (2008) Suppression of proliferation of two independent NF1 malignant peripheral nerve sheath tumor cell lines by the pan-ErbB inhibitor CI-1033. Cancer Biol Ther 7:1938–1946

    CAS  PubMed  Google Scholar 

  32. Reynolds JE, Fletcher JA, Lytle CH, Nie L, Morton CC, Diehl SR (1992) Molecular characterization of a 17q11.2 translocation in a malignant schwannoma cell line. Hum Genet 90:450–456

    Article  CAS  PubMed  Google Scholar 

  33. Mattingly RR, Felczak A, Chen CC, McCabe MJ Jr, Rosenspire AJ (2001) Low concentrations of inorganic mercury inhibit Ras activation during T cell receptor-mediated signal transduction. Toxicol Appl Pharmacol 176:162–168

    Article  CAS  PubMed  Google Scholar 

  34. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489

    Article  CAS  PubMed  Google Scholar 

  35. Cichowski K, Santiago S, Jardim M, Johnson BW, Jacks T (2003) Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor. Genes Dev 17:449–454

    Article  CAS  PubMed  Google Scholar 

  36. Dhillon AS, Meikle S, Yazici Z, Eulitz M, Kolch W (2002) Regulation of Raf-1 activation and signalling by dephosphorylation. EMBO J 21:64–71

    Article  CAS  PubMed  Google Scholar 

  37. Zubiaur M, Fernandez O, Ferrero E, Salmeron J, Malissen B, Malavasi F, Sancho J (2002) CD38 is associated with lipid rafts and upon receptor stimulation leads to Akt/protein kinase B and Erk activation in the absence of the CD3-zeta immune receptor tyrosine-based activation motifs. J Biol Chem 277:13–22

    Article  CAS  PubMed  Google Scholar 

  38. He HJ, Kole S, Kwon YK, Crow MT, Bernier M (2003) Interaction of filamin A with the insulin receptor alters insulin-dependent activation of the mitogen-activated protein kinase pathway. J Biol Chem 278:27096–27104

    Article  CAS  PubMed  Google Scholar 

  39. Kujime K, Hashimoto S, Gon Y, Shimizu K, Horie T (2000) p38 mitogen-activated protein kinase and c-jun-NH2-terminal kinase regulate RANTES production by influenza virus-infected human bronchial epithelial cells. J Immunol 164:3222–3228

    CAS  PubMed  Google Scholar 

  40. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273:18623–18632

    Article  CAS  PubMed  Google Scholar 

  41. Han Z, Boyle DL, Chang L, Bennett B, Karin M, Yang L, Manning AM, Firestein GS (2001) c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest 108:73–81

    CAS  PubMed  Google Scholar 

  42. Vandel L, Montreau N, Vial E, Pfarr CM, Binetruy B, Castellazzi M (1996) Stepwise transformation of rat embryo fibroblasts: c-Jun, JunB, or JunD can cooperate with Ras for focus formation, but a c-Jun-containing heterodimer is required for immortalization. Mol Cell Biol 16:1881–1888

    CAS  PubMed  Google Scholar 

  43. Bollag G, Clapp DW, Shih S, Adler F, Zhang YY, Thompson P, Lange BJ, Freedman MH, McCormick F, Jacks T, Shannon K (1996) Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 12:144–148

    Article  CAS  PubMed  Google Scholar 

  44. Zhang YY, Vik TA, Ryder JW, Srour EF, Jacks T, Shannon K, Clapp DW (1998) Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines. J Exp Med 187:1893–1902

    Article  CAS  PubMed  Google Scholar 

  45. Guha A, Lau N, Huvar I, Gutmann D, Provias J, Pawson T, Boss G (1996) Ras-GTP levels are elevated in human NF1 peripheral nerve tumors. Oncogene 12:507–513

    CAS  PubMed  Google Scholar 

  46. Sherman LS, Atit R, Rosenbaum T, Cox AD, Ratner N (2000) Single cell Ras-GTP analysis reveals altered Ras activity in a subpopulation of neurofibroma Schwann cells but not fibroblasts. J Biol Chem 275:30740–30745

    Article  CAS  PubMed  Google Scholar 

  47. Farassati F, Pan W, Yamoutpour F, Henke S, Piedra M, Frahm S, Al-Tawil S, Mangrum WI, Parada LF, Rabkin SD, Martuza RL, Kurtz A (2008) Ras signaling influences permissiveness of malignant peripheral nerve sheath tumor cells to oncolytic herpes. Am J Pathol 173:1861–1872

    Article  CAS  PubMed  Google Scholar 

  48. Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270:16483–16486

    CAS  PubMed  Google Scholar 

  49. Dhandapani KM, Khan MM, Wade FM, Wakade C, Mahesh VB, Brann DW (2007) Induction of transforming growth factor-beta1 by basic fibroblast growth factor in rat C6 glioma cells and astrocytes is mediated by MEK/ERK signaling and AP-1 activation. J Neurosci Res 85:1033–1045

    Article  CAS  PubMed  Google Scholar 

  50. Hirota T, Irie K, Okamoto R, Ikeda W, Takai Y (2005) Transcriptional activation of the mouse Necl-5/Tage4/PVR/CD155 gene by fibroblast growth factor or oncogenic Ras through the Raf-MEK-ERK-AP-1 pathway. Oncogene 24:2229–2235

    Article  CAS  PubMed  Google Scholar 

  51. Todisco A, Takeuchi Y, Urumov A, Yamada J, Stepan VM, Yamada T (1997) Molecular mechanisms for the growth factor action of gastrin. Am J Physiol 273:G891–G898

    CAS  PubMed  Google Scholar 

  52. Buchwalter G, Gross C, Wasylyk B (2004) Ets ternary complex transcription factors. Gene 324:1–14

    Article  CAS  PubMed  Google Scholar 

  53. al-Alawi N, Xu G, White R, Clark R, McCormick F, Feramisco JR (1993) Differential regulation of cellular activities by GTPase-activating protein and NF1. Mol Cell Biol 13:2497–2503

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Barbara and Fred Erb Endowed Chair in Cancer Genetics to MAT, as well as to the Cancer Center Support Grant of the Karmanos Cancer Institute, Wayne State University (P30CA022453). The authors are grateful for suggestions on statistical analyses provided by Dr. Judith Abrams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Tainsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraniak, J.M., Sun, D., Mattingly, R.R. et al. The role of neurofibromin in N-Ras mediated AP-1 regulation in malignant peripheral nerve sheath tumors. Mol Cell Biochem 344, 267–276 (2010). https://doi.org/10.1007/s11010-010-0551-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0551-1

Keywords

Navigation