Skip to main content
Log in

Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3)

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Progression of prostate cancer is facilitated by growth factors that activate critical signaling cascades thereby promote prostate cancer cell growth, survival, and migration. To investigate the effect of quercetin on insulin-like growth factor signaling and apoptosis in androgen independent prostate cancer cells (PC-3), IGF-IR, PI-3K, p-Akt, Akt, cyclin D1, Bad, cytochrome c, PARP, caspases-9 and 10 protein levels were assessed by western blot analysis. Mitochondrial membrane potency was detected by rhodamine-123 staining. Quercetin induced caspase-3 activity assay was performed for activation of apoptosis. Further, RT-PCR was also performed for Bad, IGF-I, II, IR, and IGFBP-3 mRNA expression. Quercetin significantly increases the proapoptotic mRNA levels of Bad, IGFBP-3 and protein levels of Bad, cytochrome C, cleaved caspase-9, caspase-10, cleaved PARP and caspase-3 activity in PC-3 cells. IGF-IRβ, PI3K, p-Akt, and cyclin D1 protein expression and mRNA levels of IGF-I, II and IGF-IR were decreased significantly. Further, treatment with PI3K inhibitor (LY294002) and quercetin showed decreased p-Akt levels. Apoptosis is confirmed by loss of mitochondrial membrane potential in quercetin treated PC-3 cells. This study suggests that quercetin decreases the survival of androgen independent prostate cancer cells by modulating the expression of insulin-like growth factors (IGF) system components, signaling molecules and induces apoptosis, which could be very useful for the androgen independent prostate cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

IGF:

Insulin-like growth factor

IGF-IR:

IGF type I receptor

IGFBPs:

IGFs binding proteins

PI-3K:

Phosphatidyl inositol-3 kinase

ERK:

Extracellular regulated kinase

Akt:

Protein kinase B

Bad:

Bcl-2-associated domain

PARP:

Poly (ADP)-ribose polymerase

References

  1. Hebert JR, Ghumare SS, Gupta PC (2006) Stage at diagnosis and relative differences in breast and prostate cancer incidence in India: comparison with the United States. Asian Pac J Cancer Prev 7:47–55

    Google Scholar 

  2. Dupont J, Pierre A, Froment P, Moreau C (2003) The insulin-like growth factor axis in cell cycle progression. Horm Metab Res 35:740–750

    Article  CAS  PubMed  Google Scholar 

  3. Dupont J, Karas M, LeRoith D (2000) The potentiation of estrogen on insulin-like growth factor I action in MCF-7 human breast cancer cells includes cell cycle components. J Biol Chem 275:35893–35901

    Article  CAS  PubMed  Google Scholar 

  4. Cox ME, Gleave ME, Zakikhani M, Bell RH et al (2009) Insulin receptor expression by human prostate cancers. Prostate 69:33–40

    Article  CAS  PubMed  Google Scholar 

  5. Cardillo MR, Monti S, Di Silverio F et al (2003) Insulin-like growth factor (IGF)-I, IGF-II and IGF type I receptor (IGFR-I) expression in prostatic cancer. Anticancer Res 23:3825–3835

    CAS  PubMed  Google Scholar 

  6. Zhang H, Yee D (2004) The therapeutic potential of agents targeting the type I insulin-like growth factor receptor. Expert Opin Investig Drugs 13:1569–1577

    Article  CAS  PubMed  Google Scholar 

  7. Kim WY, Jin Q, Oh SH et al (2009) Elevated epithelial insulin-like growth factor expression is a risk factor for lung cancer development. Cancer Res 15:7439–7448

    Article  Google Scholar 

  8. Nickerson T, Chang F, Lorimer D et al (2001) In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Cancer Res 61:6276–6280

    CAS  PubMed  Google Scholar 

  9. De Mellow JS, Baxter RC (1988) Growth hormone-dependent insulinlike growth factor (IGF) binding protein both inhibits and potentiates IGF-I-stimulated DNA synthesis in human skin fibroblasts. Biochem Biophys Res Commun 156:199–204

    Article  PubMed  Google Scholar 

  10. Conover CA (1992) Potentiation of insulin-like growth factor (IGF) action by IGF-binding protein-3: studies of underlying mechanism. Endocrinology 130:3191–3199

    Article  CAS  PubMed  Google Scholar 

  11. Kaicer E, Blat C, Harel L (1991) IGF-I and IGF-binding proteins: stimulatory and inhibitory factors secreted by human prostatic adenocarcinoma cells. Growth Factors 4:231–237

    Article  CAS  PubMed  Google Scholar 

  12. Rajah R, Khare A, Lee PD, Cohen P (1999) Insulin-like growth factor binding protein-3 is partially responsible for high-serum induced apoptosis in PC-3 prostate cancer cells. J Endocrinol 163:487–494

    Article  CAS  PubMed  Google Scholar 

  13. Hong J, Zhang G, Dong F, Rechler MM (2002) Insulin-like growth factor (IGF)-binding protein-3 mutants that do not bind IGF-I or IGF-II stimulate apoptosis in human prostate cancer cells. J Biol Chem 277:10489–10497

    Article  CAS  PubMed  Google Scholar 

  14. Oh Y, Muller HL, Ng L, Rosenfeld R (1995) Transforming growth factor-β induced cell growth inhibition in human breast cancer cells is mediated through insulin-like growth factor-binding protein-3 action. J Biol Chem 270:13589–13592

    Article  CAS  PubMed  Google Scholar 

  15. Pfeil K, Eder IE, Putz T, Ramoner R, Culig Z, Ueberall F, Bartsch G, Klocker H (2004) Long-term androgen-ablation causes increased resistance to PI3K/Akt pathway inhibition in prostate cancer cells. Prostate 58:259–268

    Article  CAS  PubMed  Google Scholar 

  16. Kreisberg JI, Malik SN, Prihoda TJ, Bedolla RG, Troyer DA, Kreisberg S, Ghosh PM (2004) Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Res 64:5232–5236

    Article  CAS  PubMed  Google Scholar 

  17. Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14:381–395

    Article  CAS  PubMed  Google Scholar 

  18. Hamelers IH, Van Schaik RF, Sipkema J et al (2002) Insulin-like growth factor I triggers nuclear accumulation of cyclin D1 in MCF-7 breast cancer cells. J Biol Chem 277:47645–47652

    Article  CAS  PubMed  Google Scholar 

  19. Steck PA, Pershouse MA, Jasser SA et al (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362

    Article  CAS  PubMed  Google Scholar 

  20. Alao JP (2007) The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer 2:6–24

    Google Scholar 

  21. Vermeulen K, Van Bockstaele DR, Berneman ZN (2005) Apoptosis: mechanisms and relevance in cancer. Ann Hematol 84:627–639

    Article  CAS  PubMed  Google Scholar 

  22. Henson PM, Bratton DL, Fadok VA (2001) Apoptotic cell removal. Curr Biol 11:795–805

    Article  Google Scholar 

  23. Green DR, Evan GI (2002) A matter of life and death. Cancer Cell 1:19–30

    Article  CAS  PubMed  Google Scholar 

  24. Vincenz C, Dixit VM (1997) Fas-associated death domain protein interleukin-1beta-converting enzyme 2 (FLICE2), an ICE/Ced-3 homologue, is proximally involved in CD95- and p55-mediated death signaling. J Biol Chem 272:6578–6583

    Article  CAS  PubMed  Google Scholar 

  25. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  CAS  PubMed  Google Scholar 

  26. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    Article  CAS  PubMed  Google Scholar 

  27. Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ (2003) Cancer statistics. Cancer J Clin 5:5–26

    Article  Google Scholar 

  28. Mahler C, Denis L (1992) Management of relapsing disease in prostate cancer. Cancer (Philia) 70:329–334

    Article  CAS  Google Scholar 

  29. Teicher BA, Kakeji Y, Ara G, Herbst RS, Northey D (1997) Prostate carcinoma response to cytotoxic therapy: in vivo resistance. In Vivo 11:453–461

    CAS  PubMed  Google Scholar 

  30. Aviram M, Fuhrman B (2002) Wine flavonoids protect against LDL oxidation and atherosclerosis. Ann NY Acad Sci 957:146–161

    Article  CAS  PubMed  Google Scholar 

  31. Choi JA, Kim JY, Lee JY et al (2001) Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol 19:837–844

    CAS  PubMed  Google Scholar 

  32. Kuo PC, Liu HF, Chao JI (2004) Survivin and p53 modulate quercetin-induced cell growth inhibition and apoptosis in human lung carcinoma cells. J Biol Chem 279:55875–55885

    Article  CAS  PubMed  Google Scholar 

  33. Ong CS, Tran E, Nguyen TT et al (2004) Quercetin-induced growth inhibition and cell death in nasopharyngeal carcinoma cells are associated with increase in Bad and hypophosphorylated retinoblastoma expressions. Oncol Rep 11:727–733

    CAS  PubMed  Google Scholar 

  34. Choi EJ, Bae SM, Ahn WS (2009) Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer MDA-MB-453 cells. Arch Pharm Res 31:1281–1295

    Article  Google Scholar 

  35. Jung HY, Heo J, Lee JY et al (2010) Quercetin enhances TRAIL-induced apoptosis in prostate cancer cells via increased protein stability of death receptor 5. Life Sci 86:351–357

    Article  CAS  PubMed  Google Scholar 

  36. Vijayababu MR, Arunkumar A, Kanagaraj P et al (2005) Quercetin-induced growth inhibition and cell death in prostate carcinoma cells (PC-3) are associated with increase in p21 and hypophosporylated retinoblastoma proteins expression. J Cancer Res Clin Oncol 131:765–771

    Article  CAS  PubMed  Google Scholar 

  37. Shukla S, MacLennan TG, Hartman JD et al (2007) Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int J Cancer 121:1424–1432

    Article  CAS  PubMed  Google Scholar 

  38. Block G, Patterson B, Subar A (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18:1–29

    Article  CAS  PubMed  Google Scholar 

  39. Lamson DW, Brignall MS (2000) Antioxidants and cancer, part 3: quercetin. Altern Med Rev 5:196–208

    CAS  PubMed  Google Scholar 

  40. Nair HK, Rao KV, Aalinkeel R (2004) Inhibition of prostate cancer cell colony formation by the flavonoid quercetin correlates with modulation of specific regulatory genes. Clin Diagn Lab Immunol 1:63–69

    Google Scholar 

  41. Chowdhury SA, Kishino K, Satoh R et al (2005) Tumor-specificity and apoptosis-inducing activity of stilbenes and flavonoids. Anticancer Res 25:2055–2063

    CAS  PubMed  Google Scholar 

  42. Igney FH, Krammer PH (2002) Death and anti-death: tumor resistance to apoptosis. Nat Rev Cancer 2:277–288

    Article  CAS  PubMed  Google Scholar 

  43. Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184

    Article  CAS  PubMed  Google Scholar 

  44. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life or-death switch. Nat Rev Cancer 2:647–656

    Article  CAS  PubMed  Google Scholar 

  45. Vijayababu MR, Arunkumar A, Kanagaraj P, Arunakaran J (2006) Effects of quercetin on insulin-like growth factors (IGFs) and their binding protein-3 (IGFBP-3) secretion and induction of apoptosis in human prostate cancer cells. J Carcinog 5:1–10

    Article  Google Scholar 

  46. Germain-Lee EL, Janicot M, Lammers R et al (1992) Expression of a type I insulin-like growth factor receptor with low affinity for insulin-like growth factor II. Biochem J 281:413–417

    CAS  PubMed  Google Scholar 

  47. Lee JT, Mc Cubrey JA (2002) The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia 16:486–507

    Article  CAS  PubMed  Google Scholar 

  48. Zi X, Zhang J, Agarwal R, Pollak M (2000) Silibinin up-regulates insulin-like growth factor-binding protein 3 expression and inhibits proliferation of androgen-independent prostate cancer cells. Cancer Res 60:5617–5620

    CAS  PubMed  Google Scholar 

  49. Gao N, Zhang Z, Jiang BH, Shi X (2003) Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun 310:1124–1132

    Article  CAS  PubMed  Google Scholar 

  50. Kim YH, Lee YJ (2007) TRAIL apoptosis is enhanced by quercetin through Akt dephosphorylation. J Cell Biochem 4:998–1009

    Article  Google Scholar 

  51. Kim YH, Lee DH, Jeong JH et al (2008) Quercetin augments TRAIL-induced apoptotic death: involvement of the ERK signal transduction pathway. Biochem Pharmacol 10:1946–1958

    Article  Google Scholar 

  52. Gamet-Payrastre L, Manenti S, Gratacap MP et al (2008) Flavonoids and the inhibition of PKC and PI 3-kinase. Gen Pharmacol 32:279–286

    Article  Google Scholar 

  53. Takahashi-Yanaga F, Sasaguri T (2008) GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal 20:581–589

    Article  CAS  PubMed  Google Scholar 

  54. Freemantle SJ, Liu X, Feng Q et al (2007) Cyclin degradation for cancer therapy and chemoprevention. J Cell Biochem 102:869–877

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The financial support from Council for scientific and Industrial research in the form of senior research fellowship (CSIR-SRF) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagadeesan Arunakaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senthilkumar, K., Elumalai, P., Arunkumar, R. et al. Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3). Mol Cell Biochem 344, 173–184 (2010). https://doi.org/10.1007/s11010-010-0540-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0540-4

Keywords

Navigation