Skip to main content
Log in

Globular adiponectin regulates energy homeostasis through AMP-activated protein kinase–acetyl-CoA carboxylase (AMPK/ACC) pathway in the hypothalamus

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Adiponectin is a newly researched adipokine which participates in the regulation of energy homeostasis. AMP-activated protein kinase (AMPK) represents an energy sensor that responds to hormone and nutrition status in vivo and exerts a regulatory effect in the hypothalamus and multiple peripheral tissues. We investigated the possible mechanisms involved in appetite regulation by adiponectin in vitro with GT1-7 cells, a mouse immortalized hypothalamic neuron. The results showed that adiponectin increased the phosphorylation of AMPK, activated AMPK phosphorylated and inactivated acetyl-CoA carboxylase (ACC), and subsequently increased expression of agouti-related peptide (AgRP) mRNA. Our results also indicated that adiponectin had no effect on signal transducer and activator of transcription (STAT3). Together these findings suggest that adiponectin regulated energy homeostasis through the AMPK/ACC pathway but not the JAK/STAT3 pathway in the hypothalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kola B, Boscaro M, Rutter GA et al (2006) Expanding role of ampk in endocrinology. Trends Endocrinol Metab 17(5):205–215. doi:S1043-2760(06)00084-1[pii]10.1016/j.tem.2006.05.006

    Article  CAS  PubMed  Google Scholar 

  2. Ceddia RB, Somwar R, Maida A et al (2005) Globular adiponectin increases glut4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 48(1):132–139. doi:10.1007/s00125-004-1609-y

    Article  CAS  PubMed  Google Scholar 

  3. Wu X, Motoshima H, Mahadev K et al (2003) Involvement of amp-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52(6):1355–1363

    Article  CAS  PubMed  Google Scholar 

  4. Andersson U, Filipsson K, Abbott CR et al (2004) Amp-activated protein kinase plays a role in the control of food intake. J Biol Chem 279(13):12005–12008. doi:10.1074/jbc.C300557200C300557200[pii]

    Article  CAS  PubMed  Google Scholar 

  5. Minokoshi Y, Alquier T, Furukawa N et al (2004) Amp-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428(6982):569–574. doi:10.1038/nature02440

    Article  CAS  PubMed  Google Scholar 

  6. Hu Z, Cha SH, Chohnan S et al (2003) Hypothalamic malonyl-coA as a mediator of feeding behavior. Proc Natl Acad Sci USA 100(22):12624–12629. doi:10.1073/pnas.18344021001834402100[pii]

    Article  CAS  PubMed  Google Scholar 

  7. Steinberg GR, Watt MJ, Fam BC et al (2006) Ciliary neurotrophic factor suppresses hypothalamic amp-kinase signaling in leptin-resistant obese mice. Endocrinology 147(8):3906–3914. doi:en.2005-1587[pii]10.1210/en.2005-1587

    Article  CAS  PubMed  Google Scholar 

  8. Kitamura T, Feng Y, Kitamura YI et al (2006) Forkhead protein foxo1 mediates agrp-dependent effects of leptin on food intake. Nat Med 12(5):534–540. doi:nm1392[pii]10.1038/nm1392

    Article  CAS  PubMed  Google Scholar 

  9. Qi Y, Takahashi N, Hileman SM et al (2004) Adiponectin acts in the brain to decrease body weight. Nat Med 10(5):524–529. doi:10.1038/nm1029nm1029[pii]

    Article  CAS  PubMed  Google Scholar 

  10. Kubota N, Yano W, Kubota T et al (2007) Adiponectin stimulates amp-activated protein kinase in the hypothalamus and increases food intake. Cell Metab 6(1):55–68. doi:S1550-4131(07)00159-3[pii]10.1016/j.cmet.2007.06.003

    Article  CAS  PubMed  Google Scholar 

  11. Li B, Lee K, Martin RJ (2006) Overexpression of glucose transporter 2 in gt1-7 cells inhibits amp-activated protein kinase and agouti-related peptide expression. Brain Res 1118(1):1–5. doi:S0006-8993(06)02362-6[pii]10.1016/j.brainres.2006.08.032

    Article  CAS  PubMed  Google Scholar 

  12. Hu Z, Dai Y, Prentki M et al (2005) A role for hypothalamic malonyl-coA in the control of food intake. J Biol Chem 280(48):39681–39683. doi:C500398200[pii]10.1074/jbc.C500398200

    Article  CAS  PubMed  Google Scholar 

  13. Lee K, Li B, Xi X et al (2005) Role of neuronal energy status in the regulation of adenosine 5’-monophosphate-activated protein kinase, orexigenic neuropeptides expression, and feeding behavior. Endocrinology 146(1):3–10. doi:10.1210/en.2004-0968en.2004-0968[pii]

    Article  CAS  PubMed  Google Scholar 

  14. Lin L, Park M, York DA (2007) Enterostatin inhibition of dietary fat intake is modulated through the melanocortin system. Peptides 28(3):643–649. doi:S0196-9781(06)00439-6[pii]10.1016/j.peptides.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  15. Wen JP, Lv WS, Yang J et al (2008) Globular adiponectin inhibits gnrh secretion from gt1-7 hypothalamic gnrh neurons by induction of hyperpolarization of membrane potential. Biochem Biophys Res Commun 371(4):756–761. doi:S0006-291X(08)00831-0[pii]10.1016/j.bbrc.2008.04.146

    Article  CAS  PubMed  Google Scholar 

  16. Carling D (2004) The amp-activated protein kinase cascade—a unifying system for energy control. Trends Biochem Sci 29(1):18–24. doi:S0968000403002986[pii]

    Article  CAS  PubMed  Google Scholar 

  17. Hardie DG (2004) The amp-activated protein kinase pathway—new players upstream and downstream. J Cell Sci 117(Pt 23):5479–5487. doi:117/23/5479[pii]10.1242/jcs.01540

    Article  CAS  PubMed  Google Scholar 

  18. Kemp BE, Stapleton D, Campbell DJ et al (2003) Amp-activated protein kinase, super metabolic regulator. Biochem Soc Trans 31(Pt 1):162–168. doi:10.1042/

    CAS  PubMed  Google Scholar 

  19. Kahn BB, Alquier T, Carling D et al (2005) Amp-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1(1):15–25. doi:S1550-4131(04)00009-9[pii]10.1016/j.cmet.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  20. Hawley SA, Pan DA, Mustard KJ et al (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for amp-activated protein kinase. Cell Metab 2(1):9–19. doi:S1550-4131(05)00166-X[pii]10.1016/j.cmet.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  21. Ruderman NB, Saha AK, Kraegen EW (2003) Minireview: malonyl coA, amp-activated protein kinase, and adiposity. Endocrinology 144(12):5166–5171. doi:10.1210/en.2003-0849en.2003-0849[pii]

    Article  CAS  PubMed  Google Scholar 

  22. Price N, van der Leij F, Jackson V et al (2002) A novel brain-expressed protein related to carnitine palmitoyltransferase i. Genomics 80(4):433–442. doi:S088875430296845X[pii]

    Article  CAS  PubMed  Google Scholar 

  23. Wolfgang MJ, Kurama T, Dai Y et al (2006) The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Proc Natl Acad Sci USA 103(19):7282–7287. doi:0602205103[pii]10.1073/pnas.0602205103

    Article  CAS  PubMed  Google Scholar 

  24. Faouzi M, Leshan R, Bjornholm M et al (2007) Differential accessibility of circulating leptin to individual hypothalamic sites. Endocrinology 148(11):5414–5423. doi:en.2007-0655[pii]10.1210/en.2007-0655

    Article  CAS  PubMed  Google Scholar 

  25. Peruzzo B, Pastor FE, Blazquez JL et al (2000) A second look at the barriers of the medial basal hypothalamus. Exp Brain Res 132(1):10–26

    Article  CAS  PubMed  Google Scholar 

  26. Loftus TM, Jaworsky DE, Frehywot GL et al (2000) Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288(5475):2379–2381. doi:8642[pii]

    Article  CAS  PubMed  Google Scholar 

  27. He W, Lam TK, Obici S et al (2006) Molecular disruption of hypothalamic nutrient sensing induces obesity. Nat Neurosci 9(2):227–233. doi:nn1626[pii]10.1038/nn1626

    Article  CAS  PubMed  Google Scholar 

  28. Gao S, Lane MD (2003) Effect of the anorectic fatty acid synthase inhibitor c75 on neuronal activity in the hypothalamus and brainstem. Proc Natl Acad Sci USA 100(10):5628–5633. doi:10.1073/pnas.10316981001031698100[pii]

    Article  CAS  PubMed  Google Scholar 

  29. Bates SH, Dundon TA, Seifert M et al (2004) Lrb-stat3 signaling is required for the neuroendocrine regulation of energy expenditure by leptin. Diabetes 53(12):3067–3073. doi:53/12/3067[pii]

    Article  CAS  PubMed  Google Scholar 

  30. Morton GJ, Cummings DE, Baskin DG et al (2006) Central nervous system control of food intake and body weight. Nature 443(7109):289–295. doi:nature05026[pii]10.1038/nature05026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants from Natural Science Foundation of China (No.30900510) and Fujian Youth Talent Project (2008F3032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Chen or Li-xiang Lin.

Additional information

Jun-Ping Wen and Chun-e Liu are equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, JP., Liu, Ce., Hu, YT. et al. Globular adiponectin regulates energy homeostasis through AMP-activated protein kinase–acetyl-CoA carboxylase (AMPK/ACC) pathway in the hypothalamus. Mol Cell Biochem 344, 109–115 (2010). https://doi.org/10.1007/s11010-010-0534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0534-2

Keywords

Navigation