Skip to main content
Log in

Activation of PPARδ promotes mitochondrial energy metabolism and decreases basal insulin secretion in palmitate-treated β-cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The peroxisome proliferator-activated receptor δ (PPARδ) regulates the expression of genes involved in cellular lipid and cell energy metabolism in many metabolically active tissues, such as liver, muscle, and fat, and plays a role in the cellular response to stress and environmental stimuli. The particular role of PPARδ in insulin-secreting β-cells, however, is not well understood; we recently identified the cell-specific role of PPARδ on mitochondrial energy metabolism and insulin secretion in lipotoxic β-cells. After treatment of HIT-T15 cells, a syrian hamster pancreatic β-cell line, with high concentrations of palmitate and/or the specific PPARδ agonist GW501516, we detected the gene expression changes for transcripts, such as peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1α), nuclear respiratory factor 1 (NRF-1), mitochondrial transcription factor A (mtTFA), the protein levels of the mitochondria uncoupling protein 2 (UCP2), mitochondrial morphology, the insulin secretion capacity and ATP/ADP ratio. Our results show that GW501516 treatment promoted generation of mitochondrial ATP, as well as expression levels of PGC-1α, NRF-1 and mtTFA, decreased basal insulin secretion, but had no effect on glucose-stimulated insulin secretion (GSIS), increased amounts of UCP2 and changed ATP-to-ADP ratio, improved mitochondrial morphology in palmitate-treated β-cells. GW501516-induced activation of PPARδ enhanced mitochondrial energy metabolism, but also promoted a concomitant mitochondrial uncoupling and resulted in decreased basal insulin secretion and restricted GSIS; this observation indicated the possible action of a protective mechanism responding to the alleviation of excessive lipid load and basal insulin secretion in lipotoxic β-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ye J-M, Doyle PJ, Iglesias MA et al (2001) Peroxisome proliferator-activated receptor (PPAR)-α activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats comparison with PPAR-γ activation. Diabetes 50:411–417

    Article  CAS  PubMed  Google Scholar 

  2. Matsui J, Terauchi Y, Kubota N et al (2004) Pioglitazone reduces islet triglyceride content and restores impaired glucose-stimulated insulin secretion in heterozygous peroxisome proliferator-activated receptor-{gamma}-deficient mice on a high-fat diet. Diabetes 53:2844–2854

    Article  CAS  PubMed  Google Scholar 

  3. Kliewer SA, Forman BM, Blumberg B et al (1994) Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA 91:7355–7359

    Article  CAS  PubMed  Google Scholar 

  4. Braissant O, Foufelle F, Scott C et al (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137:354–366

    Article  CAS  PubMed  Google Scholar 

  5. Zhou YT, Shimabukuro M, Wang MY et al (1998) Role of peroxisome proliferator-activated receptor α in disease of pancreatic β cells. Proc Natl Acad Sci USA 95:8898–8903

    Article  CAS  PubMed  Google Scholar 

  6. Tanaka T, Yamamoto J, Iwasaki S et al (2003) Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA 100:15924–15929

    Article  CAS  PubMed  Google Scholar 

  7. Wang YX, Zhang CL, Yu RT et al (2004) Regulation of muscle fiber type and running endurance by PPARδ. PLos Biol 2:e294

    Article  PubMed  Google Scholar 

  8. Schuler M, Ali F, Chambon C et al (2006) PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab 4:407–414

    Article  CAS  PubMed  Google Scholar 

  9. Hondares E, Pineda-Torra I, Iglesias R et al (2007) PPARδ, but not PPARα, activates PGC-1α gene transcription in muscle. Biochem Biophys Res Commun 354:1021–1027

    Article  CAS  PubMed  Google Scholar 

  10. Winzell MS, Wulff EM, Olsen GS et al (2010) Improved insulin sensitivity and islet function after PPARδ activation in diabetic db/db mice. Eur J Pharmacol 626:297–305

    Article  CAS  PubMed  Google Scholar 

  11. Ali MY, Whiteman M, Low C-M et al (2007) Hydrogen sulphide reduces insulin secretion from HIT-T15 cells by a KATP channel-dependent pathway. Endocrinology 195:105–112

    Article  CAS  Google Scholar 

  12. Briaud I, Harmon JS, Kelpe CL et al (2001) Lipotoxicity of the pancreatic β-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes 50:315–321

    Article  CAS  PubMed  Google Scholar 

  13. Oliver WR Jr, Shenk JL, Snaith MR et al (2001) A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA 98:5306–5311

    Article  CAS  PubMed  Google Scholar 

  14. Glinghammar B, Skogsberg J, Hamsten A et al (2003) PPARδ activation induces COX-2 gene expression and cell proliferation in human hepatocellular carcinoma cells. Biochem Biophys Res Commun 308:361–368

    Article  CAS  PubMed  Google Scholar 

  15. Krämer DK, Al-Khalili L, Guigas B et al (2007) Role of AMP kinase and PPAR{delta} in the regulation of lipid and glucose metabolism in human skeletal muscle. J Biol Chem 282:19313–19320

    Article  PubMed  Google Scholar 

  16. Lameloise N, Muzzin P, Prentki M et al (2001) Uncoupling protein 2: a possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes 50:803–809

    Article  CAS  PubMed  Google Scholar 

  17. Risérus U, Sprecher D, Johnson T et al (2008) Activation of peroxisome proliferator-activated receptor (PPAR)δ promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men. Diabetes 57:332–339

    Article  PubMed  Google Scholar 

  18. Ballinger SW, Shoffner JM, Hedaya EV et al (1992) Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nat Genet 1:11–15

    Article  CAS  PubMed  Google Scholar 

  19. Anello M, Lupi R, Spampinato D et al (2005) Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia 48:282–289

    Article  CAS  PubMed  Google Scholar 

  20. Cheng L, Ding G, Qin Q et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250

    Article  CAS  PubMed  Google Scholar 

  21. Nolte RT, Wisely GB, Westin S et al (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor γ. Nature 395:137–143

    Article  CAS  PubMed  Google Scholar 

  22. Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-l. Cell 98:115–124

    Article  CAS  PubMed  Google Scholar 

  23. Lin J, Wu H, Tarr PT et al (2002) Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418:797–801

    Article  CAS  PubMed  Google Scholar 

  24. Leone TC, Lehman JJ, Finck BN et al (2005) PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLos Biol 3:e101

    Article  PubMed  Google Scholar 

  25. Arany Z, He H, Lin J et al (2005) Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab 1:259–271

    Article  CAS  PubMed  Google Scholar 

  26. Virbasius JV, Scarpulla RC (1994) Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA 91:1309–1313

    Article  CAS  PubMed  Google Scholar 

  27. Pattti ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471

    Article  Google Scholar 

  28. Larsson NG, Wang J, Wilhelmsson H et al (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236

    Article  CAS  PubMed  Google Scholar 

  29. Noda M, Yamashita S, Takahashi N et al (2002) Switch to anaerobic glucose metabolism with NADH accumulation in the β-cell model of mitochondrial diabetes. Characteristics of βHC9 cells deficient in mitochondrial DNA transcription. J Biol Chem 277:41817–41826

    Article  CAS  PubMed  Google Scholar 

  30. Chan CB, MacDonald PE, Saleh MC et al (1999) Overexpression of uncoupling protein 2 inhibits glucose-stimulated insulin secretion from rat islets. Diabetes 48:1482–1486

    Article  CAS  PubMed  Google Scholar 

  31. Chan CB, De Leo D, Joseph JW et al (2001) Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action. Diabetes 50:1302–1310

    Article  CAS  PubMed  Google Scholar 

  32. Erecinska M, Bryla J, Michalik M et al (1992) Energy metabolism in islets of langerhans. Biochim Biophys Acta 1101:273–295

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by West China Hospital of Sichuan University. All studies were performed in the State Key Laboratory of Oral Diseases of Sichuan University. We are grateful to Xiao-yü Li for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-wei Tong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Wan, J., Ke, Lq. et al. Activation of PPARδ promotes mitochondrial energy metabolism and decreases basal insulin secretion in palmitate-treated β-cells. Mol Cell Biochem 343, 249–256 (2010). https://doi.org/10.1007/s11010-010-0520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0520-8

Keywords

Navigation