Skip to main content
Log in

Involvement of GSK-3β in attenuation of the cardioprotective effect of ischemic preconditioning in diabetic rat heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ischemic preconditioning (IPC) produces cardioprotection by phosphorylation of glycogen synthase kinase-3β (GSK-3β) that inhibits the opening of mitochondrial permeability transition pore (MPTP). The activity of glycogen GSK-3β is elevated during diabetes mellitus (DM). This study investigated the role of GSK-3β in attenuation of cardioprotective effect of IPC in diabetic rat. DM was induced by single administration of streptozotocin (STZ, 50 mg/kg, i.p.). Isolated perfused heart was subjected to 30 min of ischemia followed by 120 min of reperfusion. Myocardial infarct size was estimated by triphenyltetrazolium chloride (TTC) staining and lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) was analyzed in coronary effluent. IPC significantly decreased myocardial infarct size and release of LDH and CK-MB from normal rat heart. The cardioprotective effect of IPC was significantly attenuated in diabetic rat. Four episodes of preconditioning by either of GSK-3β inhibitors, lithium chloride (LiCl, 20 mM), indirubin-3 monooxime (1 μM), and SB216763 (3 μM) significantly reduced the LDH and CK-MB release and decreased infarct size in diabetic rat heart. Perfusion of atractyloside, an opener of MPTP, significantly attenuated, the cardioprotective effect of IPC in normal rat heart, and of GSK-3β inhibitor induced preconditioning in the DM rat heart. Our results suggest that preconditioning with GSK-3β inhibitors in diabetic rat heart may provide a more consistent cardioprotection, as compared to IPC. Also, the mechanism of diabetes mellitus-induced attenuation of cardioprotective effect of IPC involves activation of GSK-3β, due to impaired protective upstream signaling pathways and opening of MPTP during reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Murry CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020 global burden of disease study. Lancet 349:1498–1504

    Article  Google Scholar 

  2. Topol EJ, Calliff RM, Vandormael M, Grines CL, George BS, Sanz ML, Wall T, O’Brien M, Schwaiger M, Aguirre FV, Young S, Pompa JJ, Sigman KN, Lee KL, Ellis SG (1992) The thrombolysis and angioplasty in myocardial infarction. A randomized trial of late reperfusion therapy for acute myocardial infarction. Circulation 85:2090–2099

    CAS  PubMed  Google Scholar 

  3. Baxter GF, Ebrahim Z (2002) Role of bradykinin in preconditioning and protection of the ischaemic myocardium. Br J Pharmacol 135:843–854

    Article  CAS  PubMed  Google Scholar 

  4. Piper HM, Abdullah Y, Schafer (2004) The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 16:365–371

    Article  Google Scholar 

  5. Murry CE, Jennings JB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal injury in ischemic myocardium. Circulation 74:1124–1136

    CAS  PubMed  Google Scholar 

  6. Nakamura M, Wang N, Zhao Z, Wilcox J, Thourani V, Guyton R, Johansen J (2000) Preconditioning decreases Bax expression, PMN accumulation and apoptosis in reperfused rat heart. Cardiovasc Res 45:661–670

    Article  CAS  PubMed  Google Scholar 

  7. Hausenloy DJ, Duchen MR, Yellon DM (2003) Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia–reperfusion injury. Cardiovasc Res 60:617–625

    Article  CAS  PubMed  Google Scholar 

  8. DeFily DV, Chilian WM (1993) Preconditioning protects coronary arteriolar endothelium from ischemia-reperfusion injury. Am J Physiol 265:H700–H706

    CAS  PubMed  Google Scholar 

  9. Bouchard JF, Chouinard J, Lamontagne D (1998) Role of kinins in endothelial protective effect of ischemic preconditioning. Br J Pharmacol 123:413–420

    Article  CAS  PubMed  Google Scholar 

  10. Fryer RM, Pratt PF, Hsu AK, Gross GJ (2001) Differential activation of extracellular signal regulated kinase isoforms in preconditioning and opioid-induced cardioprotection. J Pharmacol Exp Ther 296:642–649

    CAS  PubMed  Google Scholar 

  11. Iliodromitis KE, Lazou A, Kremastinos DT (2007) Ischemic preconditioning: protection against myocardial necrosis and apoptosis. Vasc Health Risk Manag 3:629–637

    CAS  PubMed  Google Scholar 

  12. Ferdinandy P, Szilvassy Z, Baxter GF (1998) Adaptation to myocardial stress in disease states: is preconditioning a healthy heart phenomenon. Trends Pharmacol Sci 19:223–229

    Article  CAS  PubMed  Google Scholar 

  13. Ferdinandy P (2003) Myocardial ischaemia/reperfusion injury and preconditioning: effects of hypercholesterolaemia/hyperlipidaemia. Br J Pharmacol 138:283–285

    Article  CAS  PubMed  Google Scholar 

  14. Abete P, Ferrara N, Cioppa A, Ferrara P, Bianco S, Calabrese C, Cacciatore F, Longobardi G, Rengo F (1996) Preconditioning does not prevent postischemic dysfunction in aging heart. J Am Coll Cardiol 27:1777–1786

    Article  CAS  PubMed  Google Scholar 

  15. Liu P, Xu B, Cavalieri TA, Hock CE (2004) Attenuation of antioxidative capacity enhances reperfusion injury. In aged rat myocardium after MI/R. Am J Physiol Heart Circ Physiol 287:H2719–H2727

    Article  CAS  PubMed  Google Scholar 

  16. Snoeckx L, van der Vusse GJ, Coumans WA, Willemsen P, van der Nagpal P, Reneman RS (1986) Myocardial function in normal and spontaneously hypertensive rats during reperfusion after a period of global ischaemia. Cardiovasc Res 20:67–75

    Article  CAS  PubMed  Google Scholar 

  17. Snoeckx LH, van der Vusse GJ, Coumans WA, Willemsen PH, Reneman RS (1993) Differences in ischaemia tolerance between hypertrophied hearts of adult and aged spontaneously hypertensive rats. Cardiovasc Res 27:874–881

    Article  CAS  PubMed  Google Scholar 

  18. Sasaki H, Ogawa K, Shimizu M, Mori C, Takatsuka H, Okazaki F, Kawai M, Taniguchi I, Mochizuki S (2007) The insulin sensitizer pioglitazone improves the deterioration of ischemic preconditioning in type 2 diabetes mellitus rats. Int Heart J 48:623–635

    Article  CAS  PubMed  Google Scholar 

  19. Giricz Z, Lalu MM, Csonka C, Bencsik P, Shulz R, Ferdinandy P (2006) Hyperlipidaemia attenuate the infarct size-limitng effect of preconditioning: role of matrix metalloprotenase inhibition. J Pharmacol ExpTher 316:154–161

    CAS  Google Scholar 

  20. Ungi I, Ungi T, Ruzsa Z, Nagy E, Zimmermann Z, Csont T, Ferdinandy P (2005) Hypercholesterolemia attenuate the anti-ischemic effect of preconditioning durining coronary angioplasty. Chest 128:1623–1628

    Article  PubMed  Google Scholar 

  21. Kannel WB, McGee DL (1979) Diabetes and cardiovascular risk factor: the Framingham study. Circulation 59:8–13

    CAS  PubMed  Google Scholar 

  22. Abbott RD, Donahue RP, Kannel WB, Wilson PW (1998) The impact of diabetes on survival following myocardial infarction in men vs women: the Framingham study. JAMA 260:3456–3460

    Article  Google Scholar 

  23. Herlitz J, Wognsen GB, Emanuelsson H, Haglid M, Karlsson T, Albertsson P, Westberg S (1996) Mortality and morbidity in diabetic and nondiabetic patients during a 2-year period after coronary artery bypass grafting. Diabetes Care 19:698–703

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Thornton JD, Cohen MV, Downey JM, Schaffer SW (1993) Streptozotocin induced non insulin dependent diabetes protect the heart from infarction. Circulation 88:1273–1278

    CAS  PubMed  Google Scholar 

  25. Tatsumi T, Matoba S, Kobara M, Keira N, Kawahara A, Tsuruyuma K, Tanaka T, Katamura M, Nakagawa C, Ohta B, Yamahara Y, Asayama J, Nakagawa M (1998) Energy metabolism after ischemic preconditioning in streptozotocin induced diabetic rat hearts. J Am Coll Cardiol 31:707–715

    Article  CAS  PubMed  Google Scholar 

  26. Thirunavukkarasu M, Varma S, Penumathsa KS, Juhasz B, Zhan L, Otani H, Bagchi D, Das DK, Maulik N (2007) Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of nitric oxide, thioredoxin, and heme oxygenase. Free Radic Biol Med 43:720–729

    Article  CAS  PubMed  Google Scholar 

  27. Tosaki A, Engelman DT, Engelman RM, Das DK (1996) The evolution of diabetic response to ischemia/reperfusion and preconditioning in isolated working rat hearts. Cardiovasc Res 31:526–536

    CAS  PubMed  Google Scholar 

  28. Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC (2000) Diabetes abolishes ischemic preconditioning: role of glucose, insulin and osmolarity. Am J Physiol Heart Circ Physiol 278:H1218–H1224

    CAS  PubMed  Google Scholar 

  29. Ravingerova T, Stetka R, Volkovova K, Pancza D, Dzurba A, Ziegelhoffer A, Styk J (2000) Acute diabetes modulates response to ischemia in isolated rat heart. Mol Cell Biochem 210:143–151

    Article  CAS  PubMed  Google Scholar 

  30. Nieszner E, Posa I, Kocsis G, Preda I, Koltai MZ (2002) Influence of diabetic state of different sulfonylureas on the size of myocardial infarction with and without ischemic preconditioning in rabbits. Exp Clin Endocrinol Diabetes 110:212–218

    Article  CAS  PubMed  Google Scholar 

  31. Del Valle HF, Lascano EC, Negroni JA (2002) Ischemic preconditioning protection against stunning in conscious diabetic sheep: role of glucose, insulin, sarcolemmal and mitochondrial KATP channels. Cardiovasc Res 55:642–659

    Article  CAS  PubMed  Google Scholar 

  32. Del Valle HF, Lascano EC, Negroni JA, Crottogini AJ (2003) Absence of ischemic preconditioning protection in diabetic sheep hearts: role of sarcolemmal KATP channel dysfunction. Mol Cell Biochem 249:21–30

    Article  PubMed  Google Scholar 

  33. Hunter DR, Haworth RA (1979) The Ca-induced membrane transition in mitochondria. The protective mechanisms. Arch Biochem Biophys 195:453–459

    Article  CAS  PubMed  Google Scholar 

  34. Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307:93–98

    CAS  PubMed  Google Scholar 

  35. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642

    Article  CAS  PubMed  Google Scholar 

  36. Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 16:1175–1186

    Article  Google Scholar 

  37. Beurel E, Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79:173–189

    Article  CAS  PubMed  Google Scholar 

  38. Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning. Cardiovasc Res 55:534–543

    Article  CAS  PubMed  Google Scholar 

  39. Juhaszaova M, Zorov DB, Kim SH, SFuQ Pepe, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549

    Google Scholar 

  40. Feng J, Lucchinetti E, Ahuja P, Pasch T, Perriard JC, Zaugg M (2005) Isoflurane postconditioning prevents opening of the mitochondrial permeability transition pore through inhibition of glycogen synthase kinase 3. Anesthesiology 103:987–995

    Article  CAS  PubMed  Google Scholar 

  41. Elder-Finkelman H, Krebs EG (1999) Increased glycogen synthase kinase-3 activity in diabetes- and obesity prone-C57BL/6J mice. Diabetes 48:1662–1666

    Article  Google Scholar 

  42. Gross ER, Hsu AK, Gross GJ (2004) Opioid-induced cardioprotection occurs via glycogensynthase kinase beta inhibition during reperfusion in intact rat hearts. Circ Res 94:960–966

    Article  CAS  PubMed  Google Scholar 

  43. Pearce NJ, Arch JR, Clapham JC, Coghlam MP, Corcoran SL, Lister CA, Llano A, Moore GB, Murphy GJ, Smith SA, Taylor CM, Yates JW, Morrison AD, Harper AJ, Roxbee-Cox L, Abuin A, Wargent E, Holder HC (2004) Development of glucose intolerance in male transgenic mice overexpressing human glycogen synthase kinase-3 beta on a muscle-specific promoter. Metabolism 53:1322–1330

    Article  CAS  PubMed  Google Scholar 

  44. Gross ER, Hsu AK, Gross GJ (2007) Diabetes abolished morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3β. Diabetes 56:127–136

    Article  CAS  PubMed  Google Scholar 

  45. Ozansoy G, Akin FB (2004) Effects of gemfibrozil treatment on vascular reactivity of streptozotocin- diabetic rat aorta. J Pharma Pharmacol 56:241–246

    Article  CAS  Google Scholar 

  46. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24

    CAS  Google Scholar 

  47. Lott J, Turner K (1975) Evaluation of trinder’s glucose oxidase method for measuring glucose in serum and urine. Clin Chem 21:1754–1760

    CAS  PubMed  Google Scholar 

  48. Chopra K, Singh M, Kaul N, Andrabi KJ, Ganguly NK (1992) Decrease of myocardial infarct size with dessferrioxamine. Possible role of oxygen free radicals in its ameliorative effect. Mol Cell Biochem 113:71–76

    Article  CAS  PubMed  Google Scholar 

  49. Parikh V, Singh M (1997) Resident cardiac mast cells and the cardioprotective effect of ischemic preconditioning in isolated rat heart. J Cardiovasc Pharmacol 30:149–156

    Article  CAS  PubMed  Google Scholar 

  50. King JA (1959) A routine method for estimation of lactate dehydrogenase activity. J Med Lab Tech 16:265–272

    CAS  Google Scholar 

  51. Hughes BP (1961) A method for the estimation of serum creatine kinase and aldose activity in the normal and pathological sera. Clin Chim Acta 7:597–603

    Article  Google Scholar 

  52. Fishbein MC, Meerbaum S, Rit J, Lando U, Kanmatsuse K, Merair JC, Corday E, Ganz W (1981) Early phase acute myocardial infarct size quantification: validation of the triphenyltetrazolium chloride tissue enzyme staining technique. Am Heart J 101:593–600

    Article  CAS  PubMed  Google Scholar 

  53. Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549:513–524

    Article  CAS  PubMed  Google Scholar 

  54. Griffiths EJ, Halestrap AP (1993) Protection by cyclosporin A of ischemia reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25:1461–1469

    Article  CAS  PubMed  Google Scholar 

  55. Xi Jinkum, Wang H, Robert A, Mueller Edward A, Xu Norfleet Zhelong (2009) Mechanism of resveratrol-induced cardioprotection against reperfusion injury involves glycogen synthase kinase 3β and mitochondrial permeability transition pore. Eur J Pharmacol 604:111–116

    Article  CAS  PubMed  Google Scholar 

  56. Park SS, Zhao H, Jang Y, Mueller RA, Xu Z (2006) N6-(3-Iodobenzyl)-adenosine-5′-N- methylcarboxamide confers cardioprotection at reperfusion by inhibiting mitochondrial permeability transition pore opening via glycogen synthase kinase 3b. J Pharmacol Exp Ther 318:124–131

    Article  CAS  PubMed  Google Scholar 

  57. Hausenloy DJ, Yellon DM (2007) Preconditioning and postconditioning; united at reperfusion. Pharmacol Therap 116:173–191

    Article  CAS  Google Scholar 

  58. Faghihi M, Mirershadi F, Dehpour AR, Bazargan M (2008) Preconditioning with acute and chronic lithium administration reduces ischemia/reperfusion injury mediated by cyclooxygenase not nitric oxide synthase pathway in isolated rat heart. Eur J Pharmacol 597:57–63

    Article  CAS  PubMed  Google Scholar 

  59. Kaga S, Zhan L, Altaf E, Maulik N (2006) Glycogen synthase kinase-3β/β-catenin promotes angiogenic and anti-apoptotic signaling through the induction of VEGF, Bcl-2 and survivin expression in rat ischemic preconditioned myocardium. J Mol Cell Cardiol 40:138–147

    Article  CAS  PubMed  Google Scholar 

  60. Barillas R, Friehs I, Cao-Danh H, Martinez JF, del Nido PJ (2007) Inhibition of glycogen synthase kinase-3β improves tolerance to ischemia in hypertrophied hearts. Ann Throac Surg 84:126–133

    Article  Google Scholar 

  61. Desrois M, Sidell RJ, Gauguier D, King LM, Radda GK, Clarke K (2004) Initial steps of insulin signaling and glucose transport are defective in the type 2 diabetic rat heart. Cardiovasc Res 61:288–296

    Article  CAS  PubMed  Google Scholar 

  62. Huisamen B (2003) Protein kinase B in the diabetic heart. Mol Cell Biochem 249:31–38

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is dedicated to the memory of our esteemed colleague Prof. Manjeet Singh, who expired on 30 March, 2009, while this study was in progress. We are grateful to Mr. Praveen Garg, Chairman, ISF College of Pharmacy, Moga for his support and encouragement during the conduct of this study.

Funding source

No external source of funding was used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, H.N., Singh, M. & Sharma, P.L. Involvement of GSK-3β in attenuation of the cardioprotective effect of ischemic preconditioning in diabetic rat heart. Mol Cell Biochem 343, 75–81 (2010). https://doi.org/10.1007/s11010-010-0500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0500-z

Keywords

Navigation