Skip to main content
Log in

Differentiation linked regulation of telomerase activity by Makorin-1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

To understand telomere homeostasis, a significant aspect of cancer and growth control, it is important to examine telomerase induction as well as mechanisms of regulated elimination. Makorin-1 (MKRN1) was previously shown to be an E3 ubiquitin ligase that targets the telomerase catalytic subunit (hTERT) for proteasome processing (Kim et al., Genes Dev 19:776–781, 2005). In this study we examined expression and regulation of endogenous MKRN1 during the cell cycle and terminal differentiation. When WI-38 cells transition from active growth into a resting G1 state, basal levels of MKRN1 were found to increase by sixfold. In contrast, cancer cells typically contained low or in some cases undetectable levels of MKRN1 protein. HL-60 cells growing exponentially in culture contain no detectable MKRN1; however, following terminal differentiation, MKRN1 mRNA and protein levels are strongly up-regulated while hTERT mRNA, hTERC, and telomerase are shut down. The initial decrease in telomerase activity is due to a gradual reduction in transcription of the hTERT gene that occurs during the first 12 h of terminal differentiation. MKRN1 protein appears between 12 and 24 h and is attended by a more rapid loss of telomerase activity. As more MKRN1 protein accumulates, significantly less telomerase activity is seen. Addition of the proteasome inhibitor, MG132, reverses the loss of telomerase activity; therefore, reductions in telomerase activity are dynamic, ongoing, and correlated with robust up-regulation of MKRN1 as the cells terminally differentiate. The data are consistent with the idea that MKRN1 represents a telomerase elimination pathway to rapidly draw down the activity during differentiation or cell cycle arrest when telomerase action at chromosome ends is no longer necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blackburn EH (2001) Switching and signaling at the telomere. Cell 106:661–673

    Article  CAS  PubMed  Google Scholar 

  2. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    Article  PubMed  Google Scholar 

  3. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334

    Article  CAS  PubMed  Google Scholar 

  4. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34

    Article  CAS  PubMed  Google Scholar 

  5. Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11:1921–1929

    CAS  PubMed  Google Scholar 

  6. Cech TR, Lingner J (1997) Telomerase and the chromosome end replication problem. Ciba Found Symp 211:20–28 (discussion 28–34)

    CAS  PubMed  Google Scholar 

  7. Marcotte R, Wang E (2002) Replicative senescence revisited. J Gerontol A Biol Sci Med Sci 57:B257–B269

    PubMed  Google Scholar 

  8. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  CAS  PubMed  Google Scholar 

  9. Broccoli D, Young JW, de Lange T (1995) Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci USA 92:9082–9086

    Article  CAS  PubMed  Google Scholar 

  10. Counter CM, Gupta J, Harley CB, Leber B, Bacchetti S (1995) Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 85:2315–2320

    CAS  PubMed  Google Scholar 

  11. Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791

    Article  CAS  PubMed  Google Scholar 

  12. Lingner J, Cooper JP, Cech TR (1995) Telomerase and DNA end replication: no longer a lagging strand problem? Science 269:1533–1534

    Article  CAS  PubMed  Google Scholar 

  13. Liu JP (1999) Studies of the molecular mechanisms in the regulation of telomerase activity. FASEB J 13:2091–2104

    CAS  PubMed  Google Scholar 

  14. Liu L, Lai S, Andrews LG, Tollefsbol TO (2004) Genetic and epigenetic modulation of telomerase activity in development and disease. Gene 340:1–10

    Article  CAS  PubMed  Google Scholar 

  15. Kyo S, Takakura M, Kanaya T, Zhuo W, Fujimoto K, Nishio Y, Orimo A, Inoue M (1999) Estrogen activates telomerase. Cancer Res 59:5917–5921

    CAS  PubMed  Google Scholar 

  16. Renaud S, Loukinov D, Bosman FT, Lobanenkov V, Benhattar J (2005) CTCF binds the proximal exonic region of hTERT and inhibits its transcription. Nucleic Acids Res 33:6850–6860

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Xie LY, Allan S, Beach D, Hannon GJ (1998) Myc activates telomerase. Genes Dev 12:1769–1774

    Article  CAS  PubMed  Google Scholar 

  18. Choi JH, Park SH, Park J, Park BG, Cha SJ, Kong KH, Lee KH, Park AJ (2007) Site-specific methylation of CpG nucleotides in the hTERT promoter region can control the expression of hTERT during malignant progression of colorectal carcinoma. Biochem Biophys Res Commun 361:615–620

    Article  CAS  PubMed  Google Scholar 

  19. Guilleret I, Benhattar J (2003) Demethylation of the human telomerase catalytic subunit (hTERT) gene promoter reduced hTERT expression and telomerase activity and shortened telomeres. Exp Cell Res 289:326–334

    Article  CAS  PubMed  Google Scholar 

  20. Liu L, Saldanha SN, Pate MS, Andrews LG, Tollefsbol TO (2004) Epigenetic regulation of human telomerase reverse transcriptase promoter activity during cellular differentiation. Genes Chromosomes Cancer 41:26–37

    Article  CAS  PubMed  Google Scholar 

  21. Lopatina NG, Poole JC, Saldanha SN, Hansen NJ, Key JS, Pita MA, Andrews LG, Tollefsbol TO (2003) Control mechanisms in the regulation of telomerase reverse transcriptase expression in differentiating human teratocarcinoma cells. Biochem Biophys Res Commun 306:650–659

    Article  CAS  PubMed  Google Scholar 

  22. Renaud S, Loukinov D, Abdullaev Z, Guilleret I, Bosman FT, Lobanenkov V, Benhattar J (2007) Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene. Nucleic Acids Res 35:1245–1256

    Article  CAS  PubMed  Google Scholar 

  23. Love WK, Berletch JB, Andrews LG, Tollefsbol TO (2008) Epigenetic regulation of telomerase in retinoid-induced differentiation of human leukemia cells. Int J Oncol 32:625–631

    CAS  PubMed  Google Scholar 

  24. Ulaner GA, Hu JF, Vu TH, Giudice LC, Hoffman AR (1998) Telomerase activity in human development is regulated by human telomerase reverse transcriptase (hTERT) transcription and by alternate splicing of hTERT transcripts. Cancer Res 58:4168–4172

    CAS  PubMed  Google Scholar 

  25. Venteicher AS, Meng Z, Mason PJ, Veenstra TD, Artandi SE (2008) Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132:945–957

    Article  CAS  PubMed  Google Scholar 

  26. Kang SS, Kwon T, Kwon DY, Do SI (1999) Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem 274:13085–13090

    Article  CAS  PubMed  Google Scholar 

  27. Li H, Zhao L, Yang Z, Funder JW, Liu JP (1998) Telomerase is controlled by protein kinase Calpha in human breast cancer cells. J Biol Chem 273:33436–33442

    Article  CAS  PubMed  Google Scholar 

  28. Li H, Zhao LL, Funder JW, Liu JP (1997) Protein phosphatase 2A inhibits nuclear telomerase activity in human breast cancer cells. J Biol Chem 272:16729–16732

    Article  CAS  PubMed  Google Scholar 

  29. Liu K, Hodes RJ, Weng N (2001) Cutting edge: telomerase activation in human T lymphocytes does not require increase in telomerase reverse transcriptase (hTERT) protein but is associated with hTERT phosphorylation and nuclear translocation. J Immunol 166:4826–4830

    CAS  PubMed  Google Scholar 

  30. Zhou XZ, Lu KP (2001) The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell 107:347–359

    Article  CAS  PubMed  Google Scholar 

  31. Lee GE, Yu EY, Cho CH, Lee J, Muller MT, Chung IK (2004) DNA-protein kinase catalytic subunit-interacting protein KIP binds telomerase by interacting with human telomerase reverse transcriptase. J Biol Chem 279:34750–34755

    Article  CAS  PubMed  Google Scholar 

  32. Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE (2001) Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem 276:15571–15574

    Article  CAS  PubMed  Google Scholar 

  33. Holt SE, Aisner DL, Baur J, Tesmer VM, Dy M, Ouellette M, Trager JB, Morin GB, Toft DO, Shay JW, Wright WE, White MA (1999) Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 13:817–826

    Article  CAS  PubMed  Google Scholar 

  34. Igarashi H, Sakaguchi N (1997) Telomerase activity is induced in human peripheral B lymphocytes by the stimulation to antigen receptor. Blood 89:1299–1307

    CAS  PubMed  Google Scholar 

  35. Kim JH, Park SM, Kang MR, Oh SY, Lee TH, Muller MT, Chung IK (2005) Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes Dev 19:776–781

    Article  CAS  PubMed  Google Scholar 

  36. Gray TA, Hernandez L, Carey AH, Schaldach MA, Smithwick MJ, Rus K, Marshall Graves JA, Stewart CL, Nicholls RD (2000) The ancient source of a distinct gene family encoding proteins featuring RING and C(3)H zinc-finger motifs with abundant expression in developing brain and nervous system. Genomics 66:76–86

    Article  CAS  PubMed  Google Scholar 

  37. Her YR, Chung IK (2009) Ubiquitin ligase RLIM modulates telomere length homeostasis through a proteolysis of TRF1. J Biol Chem 284:8557–8566

    Article  CAS  PubMed  Google Scholar 

  38. Liu L, Berletch JB, Green JG, Pate MS, Andrews LG, Tollefsbol TO (2004) Telomerase inhibition by retinoids precedes cytodifferentiation of leukemia cells and may contribute to terminal differentiation. Mol Cancer Ther 3:1003–1009

    CAS  PubMed  Google Scholar 

  39. Yamada O, Takanashi M, Ujihara M, Mizoguchi H (1998) Down-regulation of telomerase activity is an early event of cellular differentiation without apparent telomeric DNA change. Leuk Res 22:711–717

    Article  CAS  PubMed  Google Scholar 

  40. Tsiftsoglou AS, Pappas IS, Vizirianakis IS (2003) Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther 100:257–290

    Article  CAS  PubMed  Google Scholar 

  41. Yamada O, Ozaki K, Nakatake M, Akiyama M, Kawauchi K, Matsuoka R (2008) Multistep regulation of telomerase during differentiation of HL60 cells. J Leukoc Biol 83:1240–1248

    Article  CAS  PubMed  Google Scholar 

  42. Masutomi K, Yu EY, Khurts S, Ben-Porath I, Currier JL, Metz GB, Brooks MW, Kaneko S, Murakami S, DeCaprio JA, Weinberg RA, Stewart SA, Hahn WC (2003) Telomerase maintains telomere structure in normal human cells. Cell 114:241–253

    Article  CAS  PubMed  Google Scholar 

  43. Possemato R, Timmons JC, Bauerlein EL, Wada N, Baldwin A, Masutomi K, Hahn WC (2008) Suppression of hPOT1 in diploid human cells results in an hTERT-dependent alteration of telomere length dynamics. Mol Cancer Res 6:1582–1593

    Article  CAS  PubMed  Google Scholar 

  44. Lee EW, Lee MS, Camus S, Ghim J, Yang MR, Oh W, Ha NC, Lane DP, Song J (2009) Differential regulation of p53 and p21 by MKRN1 E3 ligase controls cell cycle arrest and apoptosis. EMBO J 28:2100–2113

    Article  CAS  PubMed  Google Scholar 

  45. Wright WE, Tesmer VM, Liao ML, Shay JW (1999) Normal human telomeres are not late replicating. Exp Cell Res 251:492–499

    Article  CAS  PubMed  Google Scholar 

  46. Zhao Y, Sfeir AJ, Zou Y, Buseman CM, Chow TT, Shay JW, Wright WE (2009) Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 138:463–475

    Article  CAS  PubMed  Google Scholar 

  47. Forsyth NR, Wright WE, Shay JW (2002) Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation 69:188–197

    Article  CAS  PubMed  Google Scholar 

  48. Koyanagi Y, Kobayashi D, Yajima T, Asanuma K, Kimura T, Sato T, Kida T, Yagihashi A, Kameshima H, Watanabe N (2000) Telomerase activity is down regulated via decreases in hTERT mRNA but not TEP1 mRNA or hTERC during the differentiation of leukemic cells. Anticancer Res 20:773–778

    CAS  PubMed  Google Scholar 

  49. Nakatake M, Kakiuchi Y, Sasaki N, Murakami-Murofushi K, Yamada O (2007) STAT3 and PKC differentially regulate telomerase activity during megakaryocytic differentiation of K562 cells. Cell Cycle 6:1496–1501

    CAS  PubMed  Google Scholar 

  50. Ulaner GA, Hu JF, Vu TH, Giudice LC, Hoffman AR (2001) Tissue-specific alternate splicing of human telomerase reverse transcriptase (hTERT) influences telomere lengths during human development. Int J Cancer 91:644–649

    Article  CAS  PubMed  Google Scholar 

  51. Holt SE, Wright WE, Shay JW (1996) Regulation of telomerase activity in immortal cell lines. Mol Cell Biol 16:2932–2939

    CAS  PubMed  Google Scholar 

  52. Lee JH, Chung IK (2010) Curcumin inhibits nuclear localization of telomerase by dissociating the Hsp90 co-chaperone p23 from hTERT. Cancer Lett 290(1):76–86

    Article  CAS  PubMed  Google Scholar 

  53. Miller WH Jr (1998) The emerging role of retinoids and retinoic acid metabolism blocking agents in the treatment of cancer. Cancer 83:1471–1482

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. W. E. Wright for valuable discussion and input on this study. We wish to acknowledge comments on the article from Dr. Bongyong Lee, Dr. Gun Eui Lee, and Rhea Manjooran. This was supported in part by NIH Grant CA127416.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Muller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvatico, J., Kim, J.H., Chung, I.K. et al. Differentiation linked regulation of telomerase activity by Makorin-1. Mol Cell Biochem 342, 241–250 (2010). https://doi.org/10.1007/s11010-010-0490-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0490-x

Keywords

Navigation