Skip to main content
Log in

Cytochrome c redox state influences the binding and release of cytochrome c in model membranes and in brain mitochondria

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cytochrome c (cyt c), a component of the respiratory chain, promotes apoptosis when released into the cytosol. Cyt c anchorage within mitochondria depends on cardiolipin (CL). Detachment and release have been related to CL loss and peroxidation. We report that NaN3-dependent complex IV inhibition, accompanied by impairment of respiration, resulted in cyt c release. Contrarily, inhibition of respiration upstream cyt c with complex I and III inhibitors was not accompanied by the release of the protein, despite CL decrease and monolyso-CL increase. No CL changes and H2O2 formation were observed by inhibiting complex IV. In cyt c–CL liposomes, breaching cyt c–CL hydrophilic interactions produced a higher release of the reduced, compared to the oxidized form, suggesting that the hydrophobic component of cyt c–CL binding is prevalent in the oxidized form. Free or liposome-reconstituted cyt c was able to form fatty acid–protein complexes (palmitate < linoleate < oleate) only in its reduced form. We hypothesize that reduced cyt c–fatty acid binding favors the dislocation of the protein from anchoring CL. A mechanism for cyt c release independent of CL peroxidation by H2O2 is feasible. It could weaken the hydrophobic component of cyt c–CL interactions and might function following complex IV inhibition or in oxygen lack, both conditions producing accumulation of reduced cyt c and free fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Cyt c:

Cytochrome c

S/H buffer:

10 mM HEPES (pH 7.4)

4 mM KCl:

0.1 mM EDTA and 0.30 M sucrose

CCCP:

Carbonyl cyanide 3-chlorophenylhydrazone

Δψm :

Mitochondrial membrane potential

CL:

Cardiolipin

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PS:

Phosphatidylserine

PG:

Phosphatidylglycerol

References

  1. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    CAS  PubMed  Google Scholar 

  2. Gogvadze V, Zhivotovsky B (2007) Alteration of mitochondrial function and cell sensitization to death. J Bioenerg Biomembr 39:23–30

    Article  CAS  PubMed  Google Scholar 

  3. Vanderkooi J, Erecinska M, Chance B (1973) Cytochrome c interaction with membranes. I. Use of a fluorescent chromophore in the study of cytochrome c interaction with artificial and mitochondrial membranes. Arch Biochem Biophys 154:219–229

    Article  CAS  PubMed  Google Scholar 

  4. Rytömaa M, Kinnunen PK (1995) Reversibility of the binding of cytochrome c to liposomes. Implications for lipid–protein interactions. J Biol Chem 270:3197–3202

    Article  PubMed  Google Scholar 

  5. Tuominen EKJ, Wallace CJA, Kinnunen PK (2002) Phospholipid–cytochrome c interaction. Evidence for the extended lipid anchorage. J Biol Chem 277:8822–8826

    Article  CAS  PubMed  Google Scholar 

  6. Kalanxhi E, Wallace CJA (2007) Cytochrome c impaled: investigation of the extended lipid anchorage of a soluble protein to mitochondrial membrane models. Biochem J 407:179–187

    Article  CAS  PubMed  Google Scholar 

  7. Stewart JM, Blakely JA, Johnson MD (2000) The interaction of ferrocytochrome c with long-chain fatty acids and their CoA and carnitine esters. Biochem Cell Biol 78:675–681

    Article  CAS  PubMed  Google Scholar 

  8. Nantes IL, Zucchi MR, Nascimento OR, Faljoni-Alario A (2001) Effect of heme iron valence state on the conformation of cytochrome c and its association with membrane interfaces. A CD and EPR investigation. J Biol Chem 276:153–158

    Article  CAS  PubMed  Google Scholar 

  9. Monni M, Corazzi L, Migliorati G, Roberti R (2000) Respiratory rate and phosphatidylserine import in brain mitochondria in vitro. J Membr Biol 173:97–105

    Article  CAS  PubMed  Google Scholar 

  10. Piccotti L, Marchetti C, Migliorati G, Roberti R, Corazzi L (2002) Exogenous phospholipids specifically affect transmembrane potential of brain mitochondria and cytochrome c release. J Biol Chem 277:12075–12081

    Article  CAS  PubMed  Google Scholar 

  11. Piccotti L, Buratta M, Giannini S, Gresele P, Roberti R, Corazzi L (2004) Binding and release of cytochrome c in brain mitochondria is influenced by membrane potential and hydrophobic interactions with cardiolipin. J Membr Biol 198:43–53

    Article  CAS  PubMed  Google Scholar 

  12. Macala LJ, Yu RK, Ando S (1983) Analysis of brain lipids by high performance thin-layer chromatography and densitometry. J Lipid Res 24:1243–1250

    CAS  PubMed  Google Scholar 

  13. Petrosillo G, Ruggiero FM, Paradies G (2003) Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J 17:2202–2208

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80:780–787

    Article  CAS  PubMed  Google Scholar 

  15. Tretter L, Takas K, Hegedus V, Adam-Vizi V (2007) Characteristics of α-glycerophosphate-evoked H2O2 generation in brain mitochondria. J Neurochem 100:50–663

    Article  CAS  Google Scholar 

  16. Schejter A, Luntz TL, Koshy TI, Margoliash E (1992) Relationship between local and global stabilities of proteins: site-direct mutants and chemically-modified derivatives of cytochrome c. Biochemistry 35:8336–8343

    Article  Google Scholar 

  17. Davey GP, Peuchen S, Clark JB (1998) Energy threshold in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem 273:12753–12757

    Article  CAS  PubMed  Google Scholar 

  18. Vladimirov YA, Proskurnina EV, Izmailov DY, Novikov AA, Brusnichkin AV, Osipov AN, Kagan VE (2006) Cardiolipin activates cytochrome c peroxidase activity since it facilitates H2O2 access to heme. Biochemistry (Mosc) 71:998–1005

    CAS  PubMed  Google Scholar 

  19. Sun D, Gilboe DD (1994) Ischemia-induced changes in cerebral mitochondrial free fatty acids, phospholipids, and respiration in the rat. J Neurochem 62:1921–1928

    Article  CAS  PubMed  Google Scholar 

  20. Macchioni L, Corazzi L, Nardicchi V, Mannucci R, Arcuri C, Porcellati S, Sposini T, Donato R, Goracci G (2004) Rat brain cortex mitochondria release group II secretory phospholipase A2 under reduced membrane potential. J Biol Chem 279:37860–37869

    Article  CAS  PubMed  Google Scholar 

  21. Malhotra A, Edelman-Novemsky I, Xu Y, Plesken H, Ma J, Schlame M, Ren M (2009) Role of calcium-independent phospholipase A2 in the pathogenesis of Barth syndrome. Proc Natl Acad Sci USA 106:2337–2341

    Article  CAS  PubMed  Google Scholar 

  22. Buratta M, Castigli E, Sciaccaluga M, Pellegrino RM, Spinozzi F, Roberti R, Corazzi L (2008) Loss of cardiolipin in palmitate-treated GL15 glioblastoma cells favours cytochrome c release from mitochondria leading to apoptosis. J Neurochem 105:1019–1031

    Article  CAS  PubMed  Google Scholar 

  23. Choi S-Y, Gonzalvez F, Jenkins GM, Slomianny C, Chretien D, Arnoult D, Petit PX, Frohman MA (2007) Cardiolipin deficiency release cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell Death Differ 14:597–606

    Article  CAS  PubMed  Google Scholar 

  24. Mileykovskaya E, Dowhan W (2009) Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim Biophys Acta 1788:2084–2091

    Article  CAS  PubMed  Google Scholar 

  25. Buratta M, Piccotti L, Giannini S, Gresele P, Roberti R, Corazzi L (2006) Selective cytochrome c displacement by phosphate and Ca2+ in brain mitochondria. J Membr Biol 212:199–210

    Article  CAS  PubMed  Google Scholar 

  26. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    Article  CAS  PubMed  Google Scholar 

  27. Nakahara I, Kikuchi H, Taki W, Nishi S, Kito M, Yonekawa Y, Goto Y, Ogata N (1991) Degradation of mitochondrial phospholipids during experimental cerebral ischemia in rats. J Neurochem 57:839–844

    Article  CAS  PubMed  Google Scholar 

  28. Solmaz SRN, Hunte C (2003) Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer. J Biol Chem 283:17542–17549

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from Fondazione Cassa di Risparmio di Perugia and from Fondazione Cassa di Risparmio di Terni, Italy. We thank Mr. Carlo Ricci for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanfranco Corazzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macchioni, L., Corazzi, T., Davidescu, M. et al. Cytochrome c redox state influences the binding and release of cytochrome c in model membranes and in brain mitochondria. Mol Cell Biochem 341, 149–157 (2010). https://doi.org/10.1007/s11010-010-0446-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0446-1

Keywords

Navigation