Skip to main content
Log in

The structure of the 5′-untranslated region of mammalian poly(A) polymerase-α mRNA suggests a mechanism of translational regulation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Poly(A)polymerase-α (PAPOLA) has been the most extensively investigated mammalian polyadenylating enzyme, mainly in regard to its multifaceted post-translational regulation. The possibility of translational regulation of this enzyme was addressed. The transcription start site was mapped and two uORFs, highly conserved among several species, were identified in the 211-bp long, GC-rich, 5′ UTR of the PAPOLA mRNA. Mutation of the 5′ proximal AUG resulted in increased translational efficiency of the adjacent coding sequence, whereas no significant effect was observed after mutation of the second AUG. These observations imply that translational regulation is among the conserved mechanisms regulating PAPOLA expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Huang Y, Carmichael GC (1996) Role of polyadenylation in nucleocytoplasmic transport of mRNA. Mol Cell Biol 16:1534–1542

    CAS  PubMed  Google Scholar 

  2. Preiss T, Hentze MW (1998) Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392:516–520. doi:10.1038/33192

    Article  CAS  PubMed  Google Scholar 

  3. Preiss T, Muckenthaler M, Hentze MW (1998) Poly(A)-tail-promoted translation in yeast: implications for translational control. RNA 4:1321–1331

    Article  CAS  PubMed  Google Scholar 

  4. Colgan DF, Manley JL (1997) Mechanism and regulation of mRNA polyadenylation. Genes Dev 11:2755–2766. doi:10.1101/gad.11.21.2755

    Article  CAS  PubMed  Google Scholar 

  5. Minvielle-Sebastia L, Keller W (1999) mRNA polyadenylation and its coupling to other RNA processing reactions and to transcription. Curr Opin Cell Biol 11:352–357

    Article  CAS  PubMed  Google Scholar 

  6. Zhao J, Kessler M, Helmling S, O’Connor JP, Moore C (1999) Pta1, a component of yeast CF II, is required for both cleavage and poly(A) addition of mRNA precursor. Mol Cell Biol 19:7733–7740

    CAS  PubMed  Google Scholar 

  7. Kashiwabara S, Zhuang T, Yamagata K, Noguchi J, Fukamizu A, Baba T (2000) Identification of a novel isoform of poly(A) polymerase, TPAP, specifically present in the cytoplasm of spermatogenic cells. Dev Biol 228:106–115

    Article  CAS  PubMed  Google Scholar 

  8. Kwak JE, Wang L, Ballantyne S, Kimble J, Wickens M (2004) Mammalian GLD-2 homologs are poly(A) polymerases. Proc Natl Acad Sci 101:4407–4412

    Article  CAS  PubMed  Google Scholar 

  9. Topalian SL, Kaneko S, Gonzales MI, Bond GL, Ward Y, Manley JL (2001) Identification and functional characterization of neo-poly(A) polymerase, an RNA processing enzyme overexpressed in human tumors. Mol Cell Biol 16:5614–5623

    Article  Google Scholar 

  10. Zhao W, Manley JL (1996) Complex option RNA processing generates an unexpected diversity of poly(A) polymerase isoforms. Mol Cell Biol 5:2378–2386

    Google Scholar 

  11. Colgan DF, Murthy KG, Zhao W, Prives C, Manley J (1998) Inhibition of poly(A) polymerase requires p34cdc2/cyclin B phosphorylation of multiple consensus and non-consensus sites. EMBO J 17:1053–1062

    Article  CAS  PubMed  Google Scholar 

  12. Kim H, Lee JH, Lee Y (2003) Regulation of poly(A) polymerase by 14-3-3epsilon. EMBO J 22:5208–5219

    Article  CAS  PubMed  Google Scholar 

  13. Lee SH, Choi HS, Kim H, Lee Y (2008) ERK is a novel regulatory kinase for poly(A) polymerase. Nucleic Acids Res 36:803–813

    Article  CAS  PubMed  Google Scholar 

  14. Shimazu T, Horinouchi S, Yoshida M (2007) Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3′-end processing. J Biol Chem 282:4470–4478

    Article  CAS  PubMed  Google Scholar 

  15. Vethantham V, Rao N, Manley JL (2008) Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function. Genes Dev 22:499–511

    Article  CAS  PubMed  Google Scholar 

  16. Pickering BM, Willis AE (2005) The implications of structured 5′ untranslated regions on translation and disease. Semin Cell Dev Biol 16:39–47

    Article  CAS  PubMed  Google Scholar 

  17. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  Google Scholar 

  18. Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Article  CAS  PubMed  Google Scholar 

  19. Churbanov A, Rogozin IB, Babenko VN, Ali H, Koonin EV (2005) Evolutionary conservation suggests a regulatory function of AUG triplets in 5′-UTRs of eukaryotic genes. Nucleic Acids Res 33:5512–5520

    Article  CAS  PubMed  Google Scholar 

  20. Calvo SE, Pagliarini DJ, Mootha VK (2009) Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci 106:7507–7512

    Article  CAS  PubMed  Google Scholar 

  21. Colgan DF, Murthy KG, Prives C, Manley JL (1996) Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature 384:282–285

    Article  CAS  PubMed  Google Scholar 

  22. Morris DR, Geballe AP (2000) Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol 20:8635–8642

    Article  CAS  PubMed  Google Scholar 

  23. Kozak M (2002) Pushing the limits of the scanning mechanism for initiation of translation. Gene 299:1–34

    Article  CAS  PubMed  Google Scholar 

  24. Sachs MS, Geballe AP (2006) Downstream control of upstream open reading frames. Genes Dev 20:915–921

    Article  CAS  PubMed  Google Scholar 

  25. Brown CY, Mize GJ, Pineda M, George DL, Morris DR (1999) Role of two upstream open reading frames in the translational control of oncogene mdm2. Oncogene 18:5631–5637

    Article  CAS  PubMed  Google Scholar 

  26. Harigai M, Miyashita T, Hanada M, Reed JC (1996) A cis-acting element in the BCL-2 gene controls expression through translational mechanism. Oncogene 12:1369–1374

    CAS  PubMed  Google Scholar 

  27. Zhao W, Manley JL (1998) Deregulation of poly(A) polymerase interferes with cell growth. Mol Cell Biol 18:5010–5020

    CAS  PubMed  Google Scholar 

  28. Danckwardt S, Hentze MW, Kulozik AE (2008) 3′ end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J 27:482–498

    Article  CAS  PubMed  Google Scholar 

  29. Chen LS, Du-Cuny L, Vethantham V, Hawke DH, Manley JL, Zhang S, Gandhi V (2010) Chain termination and inhibition of mammalian poly(A) polymerase by modified ATP analogues. Biochem Pharmacol 79:669–677

    Article  CAS  PubMed  Google Scholar 

  30. Scorilas A, Talieri M, Ardavanis A, Courtis N, Dimitriadis E, Yotis J, Tsiapalis CM, Trangas T (2000) Polyadenylate polymerase enzymatic activity in mammary tumor cytosols: a new independent prognostic marker in primary breast cancer. Cancer Res 60:5427–5433

    CAS  PubMed  Google Scholar 

  31. Pendurthi UR, Alok D, Rao LV (1997) Binding of factor VIIa to tissue factor induces alterations in gene expression in human fibroblast cells: up-regulation of poly(A) polymerase. Proc Natl Acad Sci 94(23):12598–12603

    Article  CAS  PubMed  Google Scholar 

  32. Kwon J, Oh E, Lee S, Roh MR, Kim SE, Lee Y, Choi Y-L, In Y-H, Park T, Koh SS, Shin YK (2009) Identification of novel reference genes using multiplatform expression data and their validation for quantitative gene expression analysis. PLoS One 4(7):e6162

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theoni Trangas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapti, A., Trangas, T., Samiotaki, M. et al. The structure of the 5′-untranslated region of mammalian poly(A) polymerase-α mRNA suggests a mechanism of translational regulation. Mol Cell Biochem 340, 91–96 (2010). https://doi.org/10.1007/s11010-010-0405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0405-x

Keywords

Navigation