Skip to main content
Log in

Potential role of calcineurin in pathogenic conditions

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Since its initial discovery as Ca2+/calmodulin (CaM)-dependent serine/threonine protein phosphatase, calcineurin (CaN) has been extensively studied in many mammalian tissues. CaN has been shown to be involved in various biological and Ca2+-dependent signal transduction pathways. Over the last decade, our laboratory has been interested and has carried out numerous experiments on this specific protein phosphatase. While, a lot of research has been performed studying CaN’s involvement in ischemia, the immune system, and various mammalian tissues, not much is known about the potential role of CaN in various eye diseases. This review focuses on the studies that have been carried out in our laboratory on CaN, and specifically CaN’s involvement in the eye. We demonstrated that CaN is localized in various eye tissues (cornea, iris, ciliary body, vitreous body, retina, choroid, sclera, and optic nerve) and that both its protein expression and activity were observed in high amounts in the retina, optic nerve and cornea. Recently, we have cloned and characterized the CaN A and B subunits in the bovine retina. These initial findings suggest that CaN may play a potential role in visual transduction and various ocular diseases, including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang JH, Desai R (1977) Modulator binding protein. Bovine brain protein exhibiting the Ca2+-dependent association with the protein modulator of cyclic nucleotide phosphodiesterase. J Biol Chem 252:4175–4184

    CAS  PubMed  Google Scholar 

  2. Sharma RK, Desai R, Waisman DM, Wang JH (1979) Purification and subunit structure of bovine brain modulator binding protein. J Biol Chem 254:4276–4282

    CAS  PubMed  Google Scholar 

  3. Stewart AA, Ingebritsen TS, Manalan A, Klee CB, Cohen P (1982) Discovery of a Ca2+- and calmodulin-dependent protein phosphatase: probable identity with calcineurin (CaM-BP80). FEBS Lett 137:80–84

    Article  CAS  PubMed  Google Scholar 

  4. Ito A, Hashimoto T, Hirai M, Takeda T, Shuntoh H, Kuno T, Tanaka C (1989) The complete primary structure of calcineurin A, a calmodulin binding protein homologous with protein phosphatases 1 and 2A. Biochem Biophys Res Commun 163:1492–1497

    Article  CAS  PubMed  Google Scholar 

  5. Kuno T, Takeda T, Hirai M, Ito A, Mukai H, Tanaka C (1989) Evidence for a second isoform of the catalytic subunit of calmodulin-dependent protein phosphatase (calcineurin A). Biochem Biophys Res Commun 165:1352–1358

    Article  CAS  PubMed  Google Scholar 

  6. Kincaid RL, Giri PR, Higuchi S, Tamura J, Dixon SC, Marietta CA, Amorese DA, Martin BM (1990) Cloning and characterization of molecular isoforms of the catalytic subunit of calcineurin using nonisotopic methods. J Biol Chem 265:11312–11319

    CAS  PubMed  Google Scholar 

  7. Giri PR, Marietta CA, Higuchi S, Kincaid RL (1992) Molecular and phylogenetic analysis of calmodulin-dependent protein phosphatase (calcineurin) catalytic subunit genes. DNA Cell Biol 11:415–424

    Article  CAS  PubMed  Google Scholar 

  8. Muramatsu T, Kincaid RL (1992) Molecular cloning and chromosomal mapping of the human gene for the testis-specific catalytic subunit of calmodulin-dependent protein phosphatase (calcineurin A). Biochem Biophys Res Commun 188:265–271

    Article  CAS  PubMed  Google Scholar 

  9. Wallace RW, Tallant EA, Cheung WY (1980) High levels of a heat-labile calmodulin-binding protein (CaM-BP80) in bovine neostriatum. Biochemistry 19:1831–1837

    Article  CAS  PubMed  Google Scholar 

  10. Wallace RW, Tallant EA, McManus MC (1987) Human platelet calmodulin-binding proteins: identification and Ca2+-dependent proteolysis upon platelet activation. Biochemistry 26:2766–2773

    Article  CAS  PubMed  Google Scholar 

  11. Gagliardino JJ, Krinks MH, Gagliardino EE (1991) Identification of the calmodulin-regulated protein phosphatase, calcineurin, in rat pancreatic islets. Biochim Biophys Acta 1091:370–373

    Article  CAS  PubMed  Google Scholar 

  12. Pallen CJ, Valentine KA, Wang JH, Hollenberg MD (1985) Calcineurin-mediated dephosphorylation of the human placental membrane receptor for epidermal growth factor urogastrone. Biochemistry 24:4727–4730

    Article  CAS  PubMed  Google Scholar 

  13. Schulz RA, Yutzey KE (2004) Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Dev Biol 266:1–16

    Article  CAS  PubMed  Google Scholar 

  14. Ingebritsen TS, Stewart AA, Cohen P (1983) The protein phosphatases involved in cellular regulation. 6. Measurement of type-1 and type-2 protein phosphatases in extracts of mammalian tissues; an assessment of their physiological roles. Eur J Biochem 132:297–307

    Article  CAS  PubMed  Google Scholar 

  15. Guerini D (1997) Calcineurin: not just a simple protein phosphatase. Biochem Biophys Res Commun 235:271–275

    Article  CAS  PubMed  Google Scholar 

  16. Aramburu J, Yaffe MB, Lopez-Rodriguez C, Cantley LC, Hogan PG, Rao A (1999) Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 285:2129–2133

    Article  CAS  PubMed  Google Scholar 

  17. Kissinger CR, Parge HE, Knighton DR, Lewis CT, Pelletier LA, Tempczyk A, Kalish VJ, Tucker KD, Showalter RE, Moomaw EW et al (1995) Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature 378:641–644

    Article  CAS  PubMed  Google Scholar 

  18. Klee CB, Ren H, Wang X (1998) Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273:13367–13370

    Article  CAS  PubMed  Google Scholar 

  19. Chang CD, Mukai H, Kuno T, Tanaka C (1994) cDNA cloning of an alternatively spliced isoform of the regulatory subunit of Ca2+/calmodulin-dependent protein phosphatase (calcineurin B alpha 2). Biochim Biophys Acta 1217:174–180

    CAS  PubMed  Google Scholar 

  20. Aitken A, Cohen P, Santikarn S, Williams DH, Calder AG, Smith A, Klee CB (1982) Identification of the NH2-terminal blocking group of calcineurin B as myristic acid. FEBS Lett 150:314–318

    Article  CAS  PubMed  Google Scholar 

  21. Kennedy MT, Brockman H, Rusnak F (1996) Contributions of myristoylation to calcineurin structure/function. J Biol Chem 271:26517–26521

    Article  CAS  PubMed  Google Scholar 

  22. Aitken A, Klee CB, Cohen P (1984) The structure of the B subunit of calcineurin. Eur J Biochem 139:663–671

    Article  CAS  PubMed  Google Scholar 

  23. Kawasaki H, Kretsinger RH (1995) Calcium-binding proteins 1: EF-hands. Protein Profile 2:297–490

    CAS  PubMed  Google Scholar 

  24. De Castro E, Nef S, Fiumelli H, Lenz SE, Kawamura S, Nef P (1995) Regulation of rhodopsin phosphorylation by a family of neuronal calcium sensors. Biochem Biophys Res Commun 216:133–140

    Article  PubMed  Google Scholar 

  25. Barroso MR, Bernd KK, DeWitt ND, Chang A, Mills K, Sztul ES (1996) A novel Ca2+-binding protein, p22, is required for constitutive membrane traffic. J Biol Chem 271:10183–10187

    Article  CAS  PubMed  Google Scholar 

  26. Schaad NC, De Castro E, Nef S, Hegi S, Hinrichsen R, Martone ME, Ellisman MH, Sikkink R, Rusnak F, Sygush J, Nef P (1996) Direct modulation of calmodulin targets by the neuronal calcium sensor NCS-1. Proc Natl Acad Sci USA 93:9253–9258

    Article  CAS  PubMed  Google Scholar 

  27. Naik UP, Patel PM, Parise LV (1997) Identification of a novel calcium-binding protein that interacts with the integrin alphaIIb cytoplasmic domain. J Biol Chem 272:4651–4654

    Article  CAS  PubMed  Google Scholar 

  28. Pardo JM, Reddy MP, Yang S, Maggio A, Huh GH, Matsumoto T, Coca MA, Paino-D’Urzo M, Koiwa H, Yun DJ, Watad AA, Bressan RA, Hasegawa PM (1998) Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc Natl Acad Sci USA 95:9681–9686

    Article  CAS  PubMed  Google Scholar 

  29. Jiang H, Xiong F, Kong S, Ogawa T, Kobayashi M, Liu JO (1997) Distinct tissue and cellular distribution of two major isoforms of calcineurin. Mol Immunol 34:663–669

    Article  CAS  PubMed  Google Scholar 

  30. Alexander DR, Hexham JM, Crumpton MJ (1988) The association of type 1, type 2A and type 2B phosphatases with the human T lymphocyte plasma membrane. Biochem J 256:885–892

    CAS  PubMed  Google Scholar 

  31. Awumey EM, Moonga BS, Sodam BR, Koval AP, Adebanjo OA, Kumegawa M, Zaidi M, Epstein S (1999) Molecular and functional evidence for calcineurin-A alpha and beta isoforms in the osteoclast: novel insights into cyclosporin A action on bone resorption. Biochem Biophys Res Commun 254:248–252

    Article  CAS  PubMed  Google Scholar 

  32. Papadopoulos V, Brown AS, Hall PF (1989) Isolation and characterisation of calcineurin from adrenal cell cytoskeleton: identification of substrates for Ca2+-calmodulin-dependent phosphatase activity. Mol Cell Endocrinol 63:23–38

    Article  CAS  PubMed  Google Scholar 

  33. Papadopoulos V, Brown AS, Hall PF (1990) Calcium-calmodulin-dependent phosphorylation of cytoskeletal proteins from adrenal cells. Mol Cell Endocrinol 74:109–123

    Article  CAS  PubMed  Google Scholar 

  34. Hanley RM, Dedman JR, Shenolikar S (1987) Identification of high-affinity calmodulin-binding proteins in rat liver. Am J Physiol 252:C277–C284

    CAS  PubMed  Google Scholar 

  35. Tumlin JA (1997) Expression and function of calcineurin in the mammalian nephron: physiological roles, receptor signaling, and ion transport. Am J Kidney Dis 30:884–895

    Article  CAS  PubMed  Google Scholar 

  36. Strack S, Wadzinski BE, Ebner FF (1996) Localization of the calcium/calmodulin-dependent protein phosphatase, calcineurin, in the hindbrain and spinal cord of the rat. J Comp Neurol 375:66–76

    Article  CAS  PubMed  Google Scholar 

  37. Tash JS, Krinks M, Patel J, Means RL, Klee CB, Means AR (1988) Identification, characterization, and functional correlation of calmodulin-dependent protein phosphatase in sperm. J Cell Biol 106:1625–1633

    Article  CAS  PubMed  Google Scholar 

  38. Miyamoto K, Matsui H, Tomizawa K, Kuwata Y, Itano T, Tokuda M, Hatase O (1994) In situ localization of rat testis-specific calcineurin B subunit isoform beta 1 in the developing rat testis. Biochem Biophys Res Commun 203:1275–1283

    Article  CAS  PubMed  Google Scholar 

  39. Moriya M, Fujinaga K, Yazawa M, Katagiri C (1995) Immunohistochemical localization of the calcium/calmodulin-dependent protein phosphatase, calcineurin, in the mouse testis: its unique accumulation in spermatid nuclei. Cell Tissue Res 281:273–281

    Article  CAS  PubMed  Google Scholar 

  40. Su Q, Zhao M, Weber E, Eugster HP, Ryffel B (1995) Distribution and activity of calcineurin in rat tissues. Evidence for post-transcriptional regulation of testis-specific calcineurin B. Eur J Biochem 230:469–474

    Article  CAS  PubMed  Google Scholar 

  41. Tallant EA, Brumley LM, Wallace RW (1988) Activation of a calmodulin-dependent phosphatase by a Ca2+-dependent protease. Biochemistry 27:2205–2211

    Article  CAS  PubMed  Google Scholar 

  42. Goto S, Ushio Y (1995) Immunostaining for calcineurin, a Ca2+/calmodulin-regulated protein phosphatase, in the diagnostic tumor pathology. Noshuyo Byori 12:23–30

    CAS  PubMed  Google Scholar 

  43. Cooper NG, McLaughlin BJ, Tallant EA, Cheung WY (1985) Calmodulin-dependent protein phosphatase: immunocytochemical localization in chick retina. J Cell Biol 101:1212–1218

    Article  CAS  PubMed  Google Scholar 

  44. Usuda N, Arai H, Sasaki H, Hanai T, Nagata T, Muramatsu T, Kincaid RL, Higuchi S (1996) Differential subcellular localization of neural isoforms of the catalytic subunit of calmodulin-dependent protein phosphatase (calcineurin) in central nervous system neurons: immunohistochemistry on formalin-fixed paraffin sections employing antigen retrieval by microwave irradiation. J Histochem Cytochem 44:13–18

    CAS  PubMed  Google Scholar 

  45. Kuno T, Mukai H, Ito A, Chang CD, Kishima K, Saito N, Tanaka C (1992) Distinct cellular expression of calcineurin A alpha and A beta in rat brain. J Neurochem 58:1643–1651

    Article  CAS  PubMed  Google Scholar 

  46. Ferreira A, Kincaid R, Kosik KS (1993) Calcineurin is associated with the cytoskeleton of cultured neurons and has a role in the acquisition of polarity. Mol Biol Cell 4:1225–1238

    CAS  PubMed  Google Scholar 

  47. Goto S, Yamamoto H, Fukunaga K, Iwasa T, Matsukado Y, Miyamoto E (1985) Dephosphorylation of microtubule-associated protein 2, tau factor, and tubulin by calcineurin. J Neurochem 45:276–283

    Article  CAS  PubMed  Google Scholar 

  48. Earnest S, Khokhlatchev A, Albanesi JP, Barylko B (1996) Phosphorylation of dynamin by ERK2 inhibits the dynamin-microtubule interaction. FEBS Lett 396:62–66

    Article  CAS  PubMed  Google Scholar 

  49. Liu JP, Sim AT, Robinson PJ (1994) Calcineurin inhibition of dynamin I GTPase activity coupled to nerve terminal depolarization. Science 265:970–973

    Article  CAS  PubMed  Google Scholar 

  50. Garver TD, Kincaid RL, Conn RA, Billingsley ML (1999) Reduction of calcineurin activity in brain by antisense oligonucleotides leads to persistent phosphorylation of tau protein at Thr181 and Thr231. Mol Pharmacol 55:632–641

    CAS  PubMed  Google Scholar 

  51. Montoro RJ, Diaz-Nido J, Avila J, Lopez-Barneo J (1993) N-methyl-D-aspartate stimulates the dephosphorylation of the microtubule-associated protein 2 and potentiates excitatory synaptic pathways in the rat hippocampus. Neuroscience 54:859–871

    Article  CAS  PubMed  Google Scholar 

  52. Pallen C, Sharma R, Matsui H, Wang JH (1985) Substrate specificity and metal ion activation of calcineurin. Adv Protein Phosphatases 1:147

    CAS  Google Scholar 

  53. Dunn SE, Simard AR, Bassel-Duby R, Williams RS, Michel RN (2001) Nerve activity-dependent modulation of calcineurin signaling in adult fast and slow skeletal muscle fibers. J Biol Chem 276:45243–45254

    Article  CAS  PubMed  Google Scholar 

  54. Serrano AL, Murgia M, Pallafacchina G, Calabria E, Coniglio P, Lomo T, Schiaffino S (2001) Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proc Natl Acad Sci USA 98:13108–13113

    Article  CAS  PubMed  Google Scholar 

  55. Wada H, Hasegawa K, Morimoto T, Kakita T, Yanazume T, Abe M, Sasayama S (2002) Calcineurin-GATA-6 pathway is involved in smooth muscle-specific transcription. J Cell Biol 156:983–991

    Article  CAS  PubMed  Google Scholar 

  56. Oh-hora M, Rao A (2008) Calcium signaling in lymphocytes. Curr Opin Immunol 20:250–258

    Article  CAS  PubMed  Google Scholar 

  57. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  CAS  PubMed  Google Scholar 

  58. Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1521

    CAS  PubMed  Google Scholar 

  59. Marcaida G, Kosenko E, Minana MD, Grisolia S, Felipo V (1996) Glutamate induces a calcineurin-mediated dephosphorylation of Na+, K(+)-ATPase that results in its activation in cerebellar neurons in culture. J Neurochem 66:99–104

    Article  CAS  PubMed  Google Scholar 

  60. Reed JC (1994) Bcl-2 and the regulation of programmed cell death. J Cell Biol 124:1–6

    Article  CAS  PubMed  Google Scholar 

  61. Shibasaki F, McKeon F (1995) Calcineurin functions in Ca(2 +)-activated cell death in mammalian cells. J Cell Biol 131:735–743

    Article  CAS  PubMed  Google Scholar 

  62. Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–343

    Article  CAS  PubMed  Google Scholar 

  63. Gill C, Mestril R, Samali A (2002) Losing heart: the role of apoptosis in heart disease—a novel therapeutic target? Faseb J 16:135–146

    Article  CAS  PubMed  Google Scholar 

  64. Molkentin JD (2001) Calcineurin, mitochondrial membrane potential, and cardiomyocyte apoptosis. Circ Res 88:1220–1222

    Article  CAS  PubMed  Google Scholar 

  65. Kakita T, Hasegawa K, Iwai-Kanai E, Adachi S, Morimoto T, Wada H, Kawamura T, Yanazume T, Sasayama S (2001) Calcineurin pathway is required for endothelin-1-mediated protection against oxidant stress-induced apoptosis in cardiac myocytes. Circ Res 88:1239–1246

    Article  CAS  PubMed  Google Scholar 

  66. Lakshmikuttyamma A, Selvakumar P, Kakkar R, Kanthan R, Wang R, Sharma RK (2003) Activation of calcineurin expression in ischemia-reperfused rat heart and in human ischemic myocardium. J Cell Biochem 90:987–997

    Article  CAS  PubMed  Google Scholar 

  67. Kakkar R, Radhi JM, Rajala RV, Sharma RK (2000) Altered expression of high-molecular-weight calmodulin-binding protein in human ischaemic myocardium. J Pathol 191:208–216

    Article  CAS  PubMed  Google Scholar 

  68. Lakshmikuttyamma A, Selvakumar P, Charavaryamath C, Singh B, Tuchek J, Sharma RK (2006) Expression of calcineurin and its interacting proteins in epileptic fowl. J Neurochem 96:366–373

    Article  CAS  PubMed  Google Scholar 

  69. Wu HY, Tomizawa K, Matsui H (2007) Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder. Acta Med Okayama 61:123–137

    CAS  PubMed  Google Scholar 

  70. Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt J, Singh K (1991) Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol 109:1090–1095

    CAS  PubMed  Google Scholar 

  71. Hanninen VA, Pantcheva MB, Freeman EE, Poulin NR, Grosskreutz CL (2002) Activation of caspase 9 in a rat model of experimental glaucoma. Curr Eye Res 25:389–395

    Article  PubMed  Google Scholar 

  72. Huang W, Fileta JB, Dobberfuhl A, Filippopolous T, Guo Y, Kwon G, Grosskreutz CL (2005) Calcineurin cleavage is triggered by elevated intraocular pressure, and calcineurin inhibition blocks retinal ganglion cell death in experimental glaucoma. Proc Natl Acad Sci USA 102:12242–12247

    Article  CAS  PubMed  Google Scholar 

  73. Mukerjee N, McGinnis KM, Gnegy ME, Wang KK (2001) Caspase-mediated calcineurin activation contributes to IL-2 release during T cell activation. Biochem Biophys Res Commun 285:1192–1199

    Article  CAS  PubMed  Google Scholar 

  74. Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ (1994) Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 14:4368–4374

    CAS  PubMed  Google Scholar 

  75. Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66:807–815

    Article  CAS  PubMed  Google Scholar 

  76. Almeida S, Domingues A, Rodrigues L, Oliveira CR, Rego AC (2004) FK506 prevents mitochondrial-dependent apoptotic cell death induced by 3-nitropropionic acid in rat primary cortical cultures. Neurobiol Dis 17:435–444

    Article  CAS  PubMed  Google Scholar 

  77. Nakazawa A, Usuda N, Matsui T, Hanai T, Matsushita S, Arai H, Sasaki H, Higuchi S (2001) Localization of calcineurin in the mature and developing retina. J Histochem Cytochem 49:187–195

    CAS  PubMed  Google Scholar 

  78. Seitz DP, Pasha MK, Singh B, Chu A, Sharma RK (2002) Localization and characterization of calcineurin in bovine eye. Invest Ophthalmol Vis Sci 43:15–21

    PubMed  Google Scholar 

  79. Niederkorn JY (1999) The immune privilege of corneal allografts. Transplantation 67:1503–1508

    Article  CAS  PubMed  Google Scholar 

  80. Anel A, Buferne M, Boyer C, Schmitt-Verhulst AM, Golstein P (1994) T cell receptor-induced Fas ligand expression in cytotoxic T lymphocyte clones is blocked by protein tyrosine kinase inhibitors and cyclosporin A. Eur J Immunol 24:2469–2476

    Article  CAS  PubMed  Google Scholar 

  81. Akopian A, Gabriel R, Witkovsky P (1998) Calcium released from intracellular stores inhibits GABAA-mediated currents in ganglion cells of the turtle retina. J Neurophysiol 80:1105–1115

    CAS  PubMed  Google Scholar 

  82. Kutuzov MA, Bennett N (1996) Calcium-activated opsin phosphatase activity in retinal rod outer segments. Eur J Biochem 238:613–622

    Article  CAS  PubMed  Google Scholar 

  83. Yang SD, Fong YL, Benovic JL, Sibley DR, Caron MG, Lefkowitz RJ (1988) Dephosphorylation of the beta 2-adrenergic receptor and rhodopsin by latent phosphatase 2. J Biol Chem 263:8856–8858

    CAS  PubMed  Google Scholar 

  84. Zuo Y, Selvakumar P, Sharma RK (2009) Molecular cloning and biochemical characterization of bovine retina calcineurin. Mol Cell Biochem. doi:10.1007/s11010-009-0206-2

  85. Pallen CJ, Wang JH (1986) Stoichiometry and dynamic interaction of metal ion activators with calcineurin phosphatase. J Biol Chem 261:16115–16120

    CAS  PubMed  Google Scholar 

  86. Kikuchi M, Kashii S, Mandai M, Yasuyoshi H, Honda Y, Kaneda K, Akaike A (1998) Protective effects of FK506 against glutamate-induced neurotoxicity in retinal cell culture. Invest Ophthalmol Vis Sci 39:1227–1232

    CAS  PubMed  Google Scholar 

  87. Snellman J, Nawy S (2002) Regulation of the retinal bipolar cell mGluR6 pathway by calcineurin. J Neurophysiol 88:1088–1096

    CAS  PubMed  Google Scholar 

  88. Leamey CA, Ho-Pao CL, Sur M (2003) Role of calcineurin in activity-dependent pattern formation in the dorsal lateral geniculate nucleus of the ferret. J Neurobiol 56:153–162

    Article  CAS  PubMed  Google Scholar 

  89. Johnson AS, Garcia DM (2007) Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin. BMC Cell Biol 8:53

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This review is supported by the College of Medicine, University of Saskatchewan, Canada. The authors are thankful to Dr. Anuraag Shrivastav, Research Division, Saskatchewan Cancer Agency, Saskatoon, SK, for his suggestions and helpful discussion regarding this paper. Authors are thankful to the Association for Research in Vision and Ophthalmology for their permission to use some of the figures used in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurji, K., Sharma, R.K. Potential role of calcineurin in pathogenic conditions. Mol Cell Biochem 338, 133–141 (2010). https://doi.org/10.1007/s11010-009-0346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0346-4

Keywords

Navigation