Skip to main content
Log in

Retinoid X receptor agonists inhibit phorbol-12-myristate-13-acetate (PMA)-induced differentiation of monocytic THP-1 cells into macrophages

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Monocyte/macrophage differentiation is an essential process during atherosclerosis development. The retinoid X receptor (RXR) is a member of the nuclear hormone receptor superfamily, which plays an important regulatory role in many metabolic disorders, including atherosclerosis. The purpose of this study was to investigate the effect of RXR agonist on monocyte/macrophage differentiation in vitro. The THP-1 cell line was differentiated into a macrophage-like phenotype by incubation with phorbol-12-myristate-13-acetate (PMA) in the presence or absence of RXR agonist. The viability of adherent differentiated THP-1 cells was determined by MTT assay. Macrophage surface marker CD11b and CD36 was analyzed by flow cytometry. Phagocytosis was measured by fluorescence-labeled latex beads. The production of Cytokine Tunlornecrosisfactor-α (TNF-α), Interlaken-12p70 (IL-12p70), and Matrix metalloproteinase-9 (MMP-9), each of which was analyzed by ELISA. In the presence of the RXR agonists 9-cis retinoic acid or SR11237, PMA-induced THP-1 cells became less adherent, showed decreased macrophage-like morphological changes, decreased cell surface antigen CD11b and CD36 expression, and down regulated the phagocytosis of latex beads and the production of TNF-α and MMP-9. These data suggest that RXR agonists inhibit PMA-induced THP-1 cell differentiation into macrophage-like cells, which may be helpful in understanding the anti-atherosclerotic effect of RXR and its agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Takahashi K, Takeya M, Sakashita N (2002) Multifunctional roles of macrophages in the development and progression of atherosclerosis in humans and experimental animals. Med Electron Microsc 35:179–203. doi:10.1007/s007950200023

    Article  CAS  PubMed  Google Scholar 

  2. Fuhrman B, Partoush A, Volkova N, Aviram M (2008) Ox-LDL induces monocyte-to-macrophage differentiation in vivo: possible role for the macrophage colony stimulating factor receptor (M-CSF-R). Atherosclerosis 196:598–607. doi:10.1016/j.atherosclerosis.2007.06.026

    Article  CAS  PubMed  Google Scholar 

  3. Yamaguchi H, Haranaga S, Widen R, Friedman H, Yamamoto Y (2002) Chlamydia pneumoniae infection induces differentiation of monocytes into macrophages. Infect Immun 70:2392–2398. doi:10.1128/IAI.70.5.2392-2398.2002

    Article  CAS  PubMed  Google Scholar 

  4. Qiao JH, Tripathi J, Mishra NK, Cai Y, Tripathi S, Wang XP, Imes S, Fishbein MC, Clinton SK, Libby P, Lusis AJ, Rajavashisth T (1997) Role of macrophage colony-stimulating factor in atherosclerosis. Am J Pathol 150:1687–1699

    CAS  PubMed  Google Scholar 

  5. Shen LH, Zhou L, Wang BY, Pu J, Hu LH, Chai DJ, Wang L, Zeng JZ, He B (2008) Oxidized low-density lipoprotein induces differentiation of RAW264.7 murine macrophage cell line into dendritic-like cells. Atherosclerosis 199:257–264. doi:10.1016/j.atherosclerosis.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  6. Smith JD, Trogan E, Ginsberg E, Grigaux C, Tian J, Miyata M (1995) Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci 92:8264–8268

    Article  CAS  PubMed  Google Scholar 

  7. Szanto A, Narkar V, Shen Q, Uray IP, Davies PJA, Nagy L (2004) Retinoid X receptors: X-ploring their (patho) physiological functions. Cell Death Differ 11:S126–S143. doi:10.1038/sj.cdd.4401533

    Article  CAS  PubMed  Google Scholar 

  8. Desvergne B (2007) RXR: from partnership to leadership in metabolic regulations. Vitam Horm 75:1–32. doi:10.1016/S0083-6729(06)75001-4

    Article  CAS  PubMed  Google Scholar 

  9. Faul MM, Grese TA (2002) Selective RXR modulators for the treatment of type II diabetes. Curr Opin Drug Discov Dev 5:974–985

    CAS  Google Scholar 

  10. Claudel T, Leibowitz MD, Fievet C, Tailleux A, Wagner B, Repa JJ, Torpier G, Lobaccaro JM, Paterniti JR, Mangelsdorf DJ, Heyman RA, Auwerxi J (2008) Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. PNAS 98:2610–2615. doi:10.1073/pnas.041609298

    Article  Google Scholar 

  11. Ziouzenkova O, Plutzky J (2008) Retinoid metabolism and nuclear receptor responses: new insights into coordinated regulation of the PPAR-RXR complex. FEBS Lett 582:32–38. doi:10.1016/j.febslet.2007.11.081

    CAS  PubMed  Google Scholar 

  12. Shulman AI, Mangelsdorf DJ (2005) Retinoid x receptor heterodimers in the metabolic syndrome. N Engl J Med 353:604–615

    Article  CAS  PubMed  Google Scholar 

  13. Shen LH, He B, Wang BY, Zeng JZ, Zhou L, Hu LH, Bu J, Wang L (2007) Effect of retinoid X receptor activation on oxidized low-density lipoprotein induced cell differentiation of murine macrophage cell line into dendritic like cells. Zhonghua Xin Xue Guan Bing Za Zhi 35:833–837

    CAS  PubMed  Google Scholar 

  14. Ahuja HS, Szanto A, Nagy L, Davies PJ (2003) The retinoid X receptor and its ligands: versatile regulators of metabolic function, cell differentiation and cell death. J Biol Regul Homeost Agents 17:29–45

    CAS  PubMed  Google Scholar 

  15. Chai DJ, Wang BY, Shen LH, Pu J, Zhang XK, He B (2008) RXR agonists inhibit high-glucose-induced oxidative stress by repressing PKC activity in human endothelial cells. Free Radic Biol Med 44:1334–1347. doi:10.1016/j.freeradbiomed.2007.12.022

    Article  CAS  PubMed  Google Scholar 

  16. Konopleva M, Elstner E, McQueen TJ, Tsao T, Sudarikov A, Hu W, Schober WD, Wang RY, Chism D, Kornblau SM, Younes A, Collins SJ, Koeffler HP, Andreeff M (2004) Peroxisome proliferator-activated receptor gamma and retinoid X receptor ligands are potent inducers of differentiation and apoptosis in leukemias. Mol Cancer Ther 3:1249–1262

    CAS  PubMed  Google Scholar 

  17. Shiratsuchi H, Basson MD (2004) Extracellular pressure stimulates macrophage phagocytosis by inhibiting a pathway involving FAK and ERK. Am J Physiol Cell Physiol 286:1358–1366. doi:10.1152/ajpcell.00553.2003

    Article  Google Scholar 

  18. Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K (1980) Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 26:171–176. doi:10.1002/ijc.2910260208

    Article  CAS  PubMed  Google Scholar 

  19. Schwende H, Fitzke E, Ambs P, Dieter P (1996) Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1, 25-dihydroxyvitamin D3. J Leukoc Biol 59:555–561

    CAS  PubMed  Google Scholar 

  20. Brown TRP, Stonehouse TJ, Branch JS, Brickell PM, Katz DR (1997) Stable transfection of U937 cells with sense or antisense RXR-α cDNA suggests a role for RXR-α in the control of monoblastic differentiation induced by retinoic acid and vitamin D. Exp Cell Res 236:94–102. doi:10.1006/excr.1997.3704

    Article  CAS  PubMed  Google Scholar 

  21. James SY, Williams MA, Newland AC, Colston KW (1999) Leukemia cell differentiation: cellular and molecular interactions of retinoids and vitamin D. Gen Pharmacol 32:143–154. doi:10.1016/S0306-3623(98)00098-6

    Article  CAS  PubMed  Google Scholar 

  22. Defacque H, Commes T, Legouffe E, Sevilla C, Rossi JF, Rochette-Egly C, Marti J (1996) Expression of retinoid X receptor a is increased upon monocytic cell differentiation. Biochem Biophys Res Commun 220:315–322. doi:10.1006/bbrc.1996.0403

    Article  CAS  PubMed  Google Scholar 

  23. Brooks SC, Kazmer S, Levin AA, Yen A (1996) Myeloid differentiation and retinoblastoma phosphorylation changes in HL-60 cells induced by retinoic acid receptor- and retinoid X receptor-selective retinoic acid analogs. Blood 87:227–237

    CAS  PubMed  Google Scholar 

  24. Tontonoz P, Nagy L, Alvarez JGA, Thomazy VA, Evans RM (1998) PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241–252. doi:10.1038/83328

    Article  CAS  PubMed  Google Scholar 

  25. Liu H, Shi B, Huang CC, Eksarko P, Pope RM (2005) Transcriptional diversity during monocyte to macrophage differentiation. Immunol Lett 117:70–80. doi:10.1007/BF02041244

    Article  Google Scholar 

  26. Sussman F, de Lera AR (2005) Ligand recognition by RAR and RXR receptors: binding and selectivity. J Med Chem 48:6212–6219. doi:10.1021/jm050285w

    Article  CAS  PubMed  Google Scholar 

  27. Radhika A, Jacob SS, Sudhakaran PP (2007) Influence of oxidatively modified LDL on monocyte-macrophage differentiation. Mol Cell Biochem 305:133–143. doi:10.1007/s11010-007-9536-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant 30670880 and 30600242 from the National Natural Science Foundation, Grant 08ZR1413500 and 08XD1402600 from the Shanghai Municipal Natural Science Foundation and Grant 07060670075 from Vascular Biology, Vascular Benefit Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben He.

Additional information

Lei Zhou and Ling-hong Shen contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Shen, Lh., Hu, Lh. et al. Retinoid X receptor agonists inhibit phorbol-12-myristate-13-acetate (PMA)-induced differentiation of monocytic THP-1 cells into macrophages. Mol Cell Biochem 335, 283–289 (2010). https://doi.org/10.1007/s11010-009-0278-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0278-z

Keywords

Navigation