Skip to main content
Log in

Variable effects of the mitoKATP channel modulators diazoxide and 5-HD in ATP-depleted renal epithelial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The role of mitochondrial KATP (mitoKATP) channels in renal ischemia-reperfusion injury is controversial with studies showing both protective and deleterious effects. In this study, we compared the effects of the putative mitoKATP opener, diazoxide, and the mitoKATP blocker, 5-hydroxydecanoate (5-HD) on cytotoxicity and apoptosis in tubular epithelial cells derived from rat (NRK-52E) and pig (LLC-PK1) following in vitro ischemic injury. Following ATP depletion-recovery, there was a significant increase in cytotoxicity in both NRK cells and LLC-PK1 cells although NRK cells were more sensitive to the injury. Diazoxide treatment attenuated cytotoxicity in both cell types and 5-HD treatment-increased cytotoxicity in the sensitive NRK cells in a superoxide-dependant manner. The protective effect of diazoxide was also reversed in the presence of 5-HD in ATP-depleted NRK cells. The ATP depletion-mediated increase in superoxide was enhanced by both diazoxide and 5-HD with the effect being more pronounced in the cells undergoing 5-HD treatment. Further, ATP depletion-induced activation of caspase-3 was decreased by diazoxide in NRK cells. In order to determine the signaling pathways involved in apoptosis, we examined the activation of Erk and JNK in ATP-depleted NRK cells. Diazoxide-activated Erk in ATP-depleted cells, but did not have any effect on JNK activation. In contrast, 5-HD did not impact Erk levels but increased JNK activation even under controlled conditions. Further, the use of a JNK inhibitor with 5-HD reversed the deleterious effects of 5-HD. This study demonstrates that in cells that are sensitive to ATP depletion-recovery, mitoKATP channels protect against ATP depletion-mediated cytotoxicity and apoptosis through Erk- and JNK-dependant mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kellerman PS, Clark RA, Hoilien CA, Linas SL, Molitoris BA (1990) Role of microfilaments in maintenance of proximal tubule structural and functional integrity. Am J Physiol 259:F279–F285

    CAS  PubMed  Google Scholar 

  2. Kellerman PS, Bogusky RT (1992) Microfilament disruption occurs very early in ischemic proximal tubule cell injury. Kidney Int 42:896–902

    Article  CAS  PubMed  Google Scholar 

  3. Molitoris BA (1991) Ischemia-induced loss of epithelial polarity: potential role of the actin cytoskeleton. Am J Physiol 260:F769–F778

    CAS  PubMed  Google Scholar 

  4. Venkatachalam MA, Jones DB, Rennke HG, Sandstrom D, Patel Y (1981) Mechanism of proximal tubule brush border loss and regeneration following mild renal ischemia. Lab Invest 45:355–365

    CAS  PubMed  Google Scholar 

  5. Boim MA, Ho K, Shuck ME, Bienkowski MJ, Block JH, Slightom JL, Yang Y, Brenner BM, Hebert SC (1995) ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. Am J Physiol 268:F1132–F1140

    CAS  PubMed  Google Scholar 

  6. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38

    Article  CAS  PubMed  Google Scholar 

  7. Dworetzky SI, Trojnacki JT, Gribkoff VK (1994) Cloning and expression of a human large-conductance calcium-activated potassium channel. Brain Res Mol Brain Res 27:189–193

    Article  CAS  PubMed  Google Scholar 

  8. Kawahara K, Ogawa A, Suzuki M (1991) Hyposmotic activation of Ca-activated K channels in cultured rabbit kidney proximal tubule cells. Am J Physiol 260:F27–F33

    CAS  PubMed  Google Scholar 

  9. Cancherini DV, Trabuco LG, Reboucas NA, Kowaltowski AJ (2003) ATP-sensitive K+ channels in renal mitochondria. Am J Physiol Renal Physiol 285:F1291–F1296

    CAS  PubMed  Google Scholar 

  10. Ferranti R, da Silva MM, Kowaltowski AJ (2003) Mitochondrial ATP-sensitive K+ channel opening decreases reactive oxygen species generation. FEBS Lett 536:51–55

    Article  CAS  PubMed  Google Scholar 

  11. Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 275:H1567–H1576

    CAS  PubMed  Google Scholar 

  12. Jovanovic A, Jovanovic S, Carrasco AJ, Terzic A (1998) Acquired resistance of a mammalian cell line to hypoxia-reoxygenation through cotransfection of Kir6.2 and SUR1 clones. Lab Invest 78:1101–1107

    CAS  PubMed  Google Scholar 

  13. Ljubkovic M, Mio Y, Marinovic J, Stadnicka A, Warltier DC, Bosnjak ZJ, Bienengraeber M (2007) Isoflurane preconditioning uncouples mitochondria and protects against hypoxia-reoxygenation. Am J Physiol Cell Physiol 292:C1583–C1590

    Article  CAS  PubMed  Google Scholar 

  14. Murata M, Akao M, O’Rourke B, Marban E (2001) Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res 89:891–898

    Article  CAS  PubMed  Google Scholar 

  15. Merot J, Bidet M, Le Maout S, Tauc M, Poujeol P (1989) Two types of K+ channels in the apical membrane of rabbit proximal tubule in primary culture. Biochim Biophys Acta 978:134–144

    Article  CAS  PubMed  Google Scholar 

  16. Poncet V, Merot J, Poujeol P (1992) A calcium-permeable channel in the apical membrane of primary cultures of the rabbit distal bright convoluted tubule. Pflugers Arch 422:112–119

    Article  CAS  PubMed  Google Scholar 

  17. Tsuchiya K, Wang W, Giebisch G, Welling PA (1992) ATP is a coupling modulator of parallel Na, K-ATPase-K-channel activity in the renal proximal tubule. Proc Natl Acad Sci USA 89:6418–6422

    Article  CAS  PubMed  Google Scholar 

  18. Garlid KD, Puddu PE, Pasdois P, Costa AD, Beauvoit B, Criniti A, Tariosse L, Diolez P, Dos Santos P (2006) Inhibition of cardiac contractility by 5-hydroxydecanoate and tetraphenylphosphonium ion: a possible role of mitoKATP in response to inotropic stress. Am J Physiol Heart Circ Physiol 291:H152–H160

    Article  CAS  PubMed  Google Scholar 

  19. Pasdois P, Beauvoit B, Costa AD, Vinassa B, Tariosse L, Bonoron-Adele S, Garlid KD, Dos Santos P (2007) Sarcoplasmic ATP-sensitive potassium channel blocker HMR1098 protects the ischemic heart: implication of calcium, complex I, reactive oxygen species and mitochondrial ATP-sensitive potassium channel. J Mol Cell Cardiol 42:631–642

    Article  CAS  PubMed  Google Scholar 

  20. Pasdois P, Quinlan CL, Rissa A, Tariosse L, Vinassa B, Costa AD, Pierre SV, Dos Santos P, Garlid KD (2007) Ouabain protects rat hearts against ischemia-reperfusion injury via pathway involving src kinase, mitoKATP, and ROS. Am J Physiol Heart Circ Physiol 292:H1470–H1478

    Article  CAS  PubMed  Google Scholar 

  21. Roseborough G, Gao D, Chen L, Trush MA, Zhou S, Williams GM, Wei C (2006) The mitochondrial K-ATP channel opener, diazoxide, prevents ischemia-reperfusion injury in the rabbit spinal cord. Am J Pathol 168:1443–1451

    Article  CAS  PubMed  Google Scholar 

  22. Dos Santos P, Kowaltowski AJ, Laclau MN, Seetharaman S, Paucek P, Boudina S, Thambo JB, Tariosse L, Garlid KD (2002) Mechanisms by which opening the mitochondrial ATP-sensitive K(+) channel protects the ischemic heart. Am J Physiol Heart Circ Physiol 283:H284–H295

    CAS  PubMed  Google Scholar 

  23. Krenz M, Oldenburg O, Wimpee H, Cohen MV, Garlid KD, Critz SD, Downey JM, Benoit JN (2002) Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular smooth muscle cells. Basic Res Cardiol 97:365–373

    Article  CAS  PubMed  Google Scholar 

  24. Zager RA, Johnson AC, Hanson SY, Lund S (2006) Acute nephrotoxic and obstructive injury primes the kidney to endotoxin-driven cytokine/chemokine production. Kidney Int 69:1181–1188

    Article  CAS  PubMed  Google Scholar 

  25. Pompermayer K, Souza DG, Lara GG, Silveira KD, Cassali GD, Andrade AA, Bonjardim CA, Passaglio KT, Assreuy J, Cunha FQ, Vieira MA, Teixeira MM (2005) The ATP-sensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats. Kidney Int 67:1785–1796

    Article  CAS  PubMed  Google Scholar 

  26. Reeves WB, Shah SV (1994) Activation of potassium channels contributes to hypoxic injury in proximal tubules. J Clin Invest 94:2289–2294

    Article  CAS  PubMed  Google Scholar 

  27. Zager RA, Johnson AC, Lund S, Hanson SY, Abrass CK (2006) Levosimendan protects against experimental endotoxemic acute renal failure. Am J Physiol Renal Physiol 290:F1453–F1462

    Article  CAS  PubMed  Google Scholar 

  28. Brady PA, Zhang S, Lopez JR, Jovanovic A, Alekseev AE, Terzic A (1996) Dual effect of glyburide, an antagonist of KATP channels, on metabolic inhibition-induced Ca2+ loading in cardiomyocytes. Eur J Pharmacol 308:343–349

    Article  CAS  PubMed  Google Scholar 

  29. Nilakantan V, Liang H, Maenpaa CJ, Johnson CP (2008) Differential patterns of peroxynitrite mediated apoptosis in proximal tubular epithelial cells following ATP depletion recovery. Apoptosis 13:621–633

    Article  CAS  PubMed  Google Scholar 

  30. Maenpaa CJ, Shames BD, Van Why SK, Johnson CP, Nilakantan V (2008) Oxidant-mediated apoptosis in proximal tubular epithelial cells following ATP depletion and recovery. Free Radic Biol Med 44:518–526

    Article  CAS  PubMed  Google Scholar 

  31. Saenz-Morales D, Escribese MM, Stamatakis K, Garcia-Martos M, Alegre L, Conde E, Perez-Sala D, Mampaso F, Garcia-Bermejo ML (2006) Requirements for proximal tubule epithelial cell detachment in response to ischemia: role of oxidative stress. Exp Cell Res 312:3711–3727

    Article  CAS  PubMed  Google Scholar 

  32. Tsao CC, Nica AF, Kurinna SM, Jiffar T, Mumby M, Ruvolo PP (2007) Mitochondrial protein phosphatase 2A regulates cell death induced by simulated ischemia in kidney NRK-52E cells. Cell Cycle 6:2377–2385

    CAS  PubMed  Google Scholar 

  33. Nilakantan V, Maenpaa C, Jia G, Roman RJ, Park F (2008) 20-HETE mediated cytotoxicity and apoptosis in ischemic kidney epithelial cells. Am J Physiol Renal Physiol 294:F562–F570

    Article  CAS  PubMed  Google Scholar 

  34. Simerabet M, Robin E, Aristi I, Adamczyk S, Tavernier B, Vallet B, Bordet R, Lebuffe G (2008) Preconditioning by an in situ administration of hydrogen peroxide: involvement of reactive oxygen species and mitochondrial ATP-dependent potassium channel in a cerebral ischemia-reperfusion model. Brain Res 1240:177–184

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe M, Katsura K, Ohsawa I, Mizukoshi G, Takahashi K, Asoh S, Ohta S, Katayama Y (2008) Involvement of mitoKATP channel in protective mechanisms of cerebral ischemic tolerance. Brain Res 1238:199–207

    Article  CAS  PubMed  Google Scholar 

  36. Matejikova J, Kucharska J, Pinterova M, Pancza D, Ravingerova T (2009) Protection against ischemia-induced ventricular arrhythmias and myocardial dysfunction conferred by preconditioning in the rat heart: involvement of mitochondrial K(ATP) channels and reactive oxygen species. Physiol Res 58:9–19

    CAS  PubMed  Google Scholar 

  37. Schwartz LM, Reimer KA, Crago MS, Jennings RB (2007) Pharmacological preconditioning with diazoxide slows energy metabolism during sustained ischemia. Exp Clin Cardiol 12:139–147

    CAS  PubMed  Google Scholar 

  38. Drose S, Brandt U, Hanley PJ (2006) K+-independent actions of diazoxide question the role of inner membrane KATP channels in mitochondrial cytoprotective signaling. J Biol Chem 281:23733–23739

    Article  PubMed  Google Scholar 

  39. Dzeja PP, Bast P, Ozcan C, Valverde A, Holmuhamedov EL, Van Wylen DG, Terzic A (2003) Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection. Am J Physiol Heart Circ Physiol 284:H1048–H1056

    CAS  PubMed  Google Scholar 

  40. Hausenloy D, Wynne A, Duchen M, Yellon D (2004) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109:1714–1717

    Article  CAS  PubMed  Google Scholar 

  41. Sun Z, Zhang X, Ito K, Li Y, Montgomery RA, Tachibana S, Williams GM (2008) Amelioration of oxidative mitochondrial DNA damage and deletion after renal ischemic injury by the KATP channel opener diazoxide. Am J Physiol Renal Physiol 294:F491–F498

    Article  CAS  PubMed  Google Scholar 

  42. Ozcan C, Bienengraeber M, Dzeja PP, Terzic A (2002) Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol 282:H531–H539

    CAS  PubMed  Google Scholar 

  43. Drose S, Hanley PJ, Brandt U (2009) Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III. Biochim Biophys Acta 1790:558–565

    PubMed  Google Scholar 

  44. Hanley PJ, Gopalan KV, Lareau RA, Srivastava DK, von Meltzer M, Daut J (2003) Beta-oxidation of 5-hydroxydecanoate, a putative blocker of mitochondrial ATP-sensitive potassium channels. J Physiol 547:387–393

    Article  CAS  PubMed  Google Scholar 

  45. Hanley PJ, Drose S, Brandt U, Lareau RA, Banerjee AL, Srivastava DK, Banaszak LJ, Barycki JJ, Van Veldhoven PP, Daut J (2005) 5-Hydroxydecanoate is metabolised in mitochondria and creates a rate-limiting bottleneck for beta-oxidation of fatty acids. J Physiol 562:307–318

    Article  CAS  PubMed  Google Scholar 

  46. Busija DW, Katakam P, Rajapakse NC, Kis B, Grover G, Domoki F, Bari F (2005) Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria. Brain Res Bull 66:85–90

    Article  CAS  PubMed  Google Scholar 

  47. Ahmad N, Wang Y, Haider KH, Wang B, Pasha Z, Uzun O, Ashraf M (2006) Cardiac protection by mitoKATP channels is dependent on Akt translocation from cytosol to mitochondria during late preconditioning. Am J Physiol Heart Circ Physiol 290:H2402–H2408

    Article  CAS  PubMed  Google Scholar 

  48. Wang Y, Ahmad N, Kudo M, Ashraf M (2004) Contribution of Akt and endothelial nitric oxide synthase to diazoxide-induced late preconditioning. Am J Physiol Heart Circ Physiol 287:H1125–H1131

    Article  CAS  PubMed  Google Scholar 

  49. McCully JD, Wakiyama H, Cowan DB, Federman M, Parker RA, Levitsky S (2002) Diazoxide amelioration of myocardial injury and mitochondrial damage during cardiac surgery. Ann Thorac Surg 74:2138–2145; (discussion 2146)

    Google Scholar 

  50. Wang T, Zhang ZX, Xu YJ, Hu QH (2007) 5-Hydroxydecanoate inhibits proliferation of hypoxic human pulmonary artery smooth muscle cells by blocking mitochondrial K(ATP) channels. Acta Pharmacol Sin 28:1531–1540

    Article  CAS  PubMed  Google Scholar 

  51. Huang L, Li B, Li W, Guo H, Zou F (2009) ATP-sensitive potassium channels control glioma cells proliferation by regulating ERK activity. Carcinogenesis 30:737–744

    Article  CAS  PubMed  Google Scholar 

  52. Naitoh K, Ichikawa Y, Miura T, Nakamura Y, Miki T, Ikeda Y, Kobayashi H, Nishihara M, Ohori K, Shimamoto K (2006) MitoKATP channel activation suppresses gap junction permeability in the ischemic myocardium by an ERK-dependent mechanism. Cardiovasc Res 70:374–383

    Article  CAS  PubMed  Google Scholar 

  53. Sarre A, Gardier S, Maurer F, Bonny C, Raddatz E (2008) Modulation of the c-Jun N-terminal kinase activity in the embryonic heart in response to anoxia-reoxygenation: involvement of the Ca2+ and mitoKATP channels. Mol Cell Biochem 313:133–138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Children’s Research Institute (Medical College of Wisconsin) for support of the summer student research program in which Erin Taylor was a participant. This work was supported in part by an National Institutes of Health-P50 grant (1DK-079306-01, P&F project # 3), an American Heart Association grant (0930326G) and Division of Transplant Surgery (Medical College of Wisconsin) start up funds to V. Nilakantan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vani Nilakantan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilakantan, V., Liang, H., Mortensen, J. et al. Variable effects of the mitoKATP channel modulators diazoxide and 5-HD in ATP-depleted renal epithelial cells. Mol Cell Biochem 335, 211–222 (2010). https://doi.org/10.1007/s11010-009-0271-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0271-6

Keywords

Navigation