Skip to main content

Advertisement

Log in

Multifocal signal modulation therapy of cancer: ancient weapon, modern targets

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Although safe in most cases, ancient treatments are ignored because neither their active components nor their molecular targets are well defined. This is not the case, however, with curcumin, a yellow-pigment substance and component of turmeric (Curcuma longa), which was identified more than a century ago. Recently, extensive research has addressed the chemotherapeutic potential of this relatively nontoxic-plant-derived polyphenol. Because most cancers are caused by deregulation of as many as 500 different genes, agents that target multiple gene products are needed for prevention and treatment of cancer. In this regard, curcumin has been reported to have immense potentiality for being used in cancer chemotherapy because of its control over the machineries of cell survival, proliferation, invasion, and angiogenesis. The mechanisms implicated are diverse and appear to involve a combination of cell signaling pathways at multiple levels. This review seeks to summarize the unique multifocal signal modulatory properties of the “ancient weapon,” curcumin, which may be exploited for successful clinical cancer prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase B

CDK:

Cyclin-dependent kinase

EGFR:

Epidermal growth factor receptor

IκB:

Inhibitor of κB

IKK:

Inhibitor of κB kinase

iNOS:

Inducible nitric oxide synthase

JAK:

Janus kinase

JNK:

c-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

NFκB:

Nuclear factor κB

PI3K:

Phosphatidylinositol-3-kinase

PCNA:

Proliferating cell nuclear antigen

PKC:

Protein kinase C

PPAR:

Peroxisomal proliferators-activated receptor

pRB:

Retinoblastoma protein

STAT:

Signal transducer and activator of transcription

References

  1. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  CAS  PubMed  Google Scholar 

  2. Radulovic S, Bjelogrlic SK (2007) Sunitinib sorafenib and mTOR inhibitors in renal cancer. J Buon Suppl 1:S151–S162

    Google Scholar 

  3. Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269:199–225

    Article  CAS  PubMed  Google Scholar 

  4. Choudhuri T, Pal S, Das T, Sa G (2005) Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280:20059–20068

    Article  CAS  PubMed  Google Scholar 

  5. Sa G, Das T (2008) Anti cancer effects of curcumin: cycle of life and death. Cell Div 3:14

    Article  PubMed  Google Scholar 

  6. Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB (2008) Curcumin and cancer: an “old-age” disease with an “old-age” solution. Cancer Lett 267:133–164

    Article  CAS  PubMed  Google Scholar 

  7. Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB (2008) Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol 76:1590–1611

    Article  CAS  PubMed  Google Scholar 

  8. Tomren MA, Masson M, Loftsson T, Tonnesen HH (2007) Studies on curcumin and curcuminoids XXXI. Symmetric and asymmetric curcuminoids: stability, activity and complexation with cyclodextrin. Int J Pharm 338:27–34

    Article  CAS  PubMed  Google Scholar 

  9. Brennan MJ (1975) Endocrinology in cancer of the breast. Status and prospects. Am J Clin Pathol 64:797–809

    CAS  PubMed  Google Scholar 

  10. Welsch T, Kleef J, Friess H (2007) Molecular pathogenesis of pancreatic cancer: advances and challenges. Curr Mol Med 7:504–521

    Article  CAS  PubMed  Google Scholar 

  11. Rüegg C, Dormond O, Foletti A (2002) Suppression of tumor angiogenesis through the inhibition of integrin function and signaling in endothelial cells: which side to target? Endothelium 9:151–160

    Article  PubMed  Google Scholar 

  12. Harmey JH, Bouchier-Hayes D (2002) Vascular endothelial growth factor (VEGF), a survival factor for tumour cells: implications for anti-angiogenic therapy. Bioessays 24:280–283

    Article  CAS  PubMed  Google Scholar 

  13. Crispino P, De Toma G, Ciardi A et al (2008) Role of desmoplasia in recurrence of stage II colorectal cancer within five years after surgery and therapeutic implication. Cancer Invest 26:419–425

    Article  PubMed  Google Scholar 

  14. Lefranc F, Brotchi J, Kiss R (2005) Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 23:2411–2422

    Article  CAS  PubMed  Google Scholar 

  15. Rao CV, Rivenson A, Simi B, Reddy BS (1995) Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 55:259–266

    CAS  PubMed  Google Scholar 

  16. Kawamori T, Lubet R, Steele VE, Kelloff GJ, Kaskey RB, Rao CV, Reddy BS (1999) Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 59:597–601

    CAS  PubMed  Google Scholar 

  17. Samaha HS, Kelloff GJ, Steele V, Rao CV, Reddy BS (1997) Modulation of apoptosis by sulindac, curcumin, phenylethyl-3-methylcaffeate, and 6-phenylhexyl isothiocyanate: apoptotic index as a biomarker in colon cancer chemoprevention and promotion. Cancer Res 57:1301–1305

    CAS  PubMed  Google Scholar 

  18. Sharma RA, Farmer PB (2004) Biological relevance of adduct detection to the chemoprevention of cancer. Clin Cancer Res 10:4901–4912

    Article  CAS  PubMed  Google Scholar 

  19. Luongo C, Moser AR, Gledhill S, Dove WF (1994) Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res 54:5947–5952

    CAS  PubMed  Google Scholar 

  20. Conney AH (2003) Enzyme induction and dietary chemicals as approaches to cancer chemo-prevention: the Seventh DeWitt S. Goodman Lecture. Cancer Res 63:7005–7031

    CAS  PubMed  Google Scholar 

  21. Park CH, Hahm ER, Park S, Kim HK, Yang CH (2005) The inhibitory mechanism of curcumin and its derivative against beta-catenin/Tcf signaling. FEBS Lett 579:2965–2971

    Article  CAS  PubMed  Google Scholar 

  22. Beevers CS, Li F, Liu L, Huang S (2006) Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 119:757–764

    Article  CAS  PubMed  Google Scholar 

  23. Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G (2002) Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett 512:334–340

    Article  CAS  PubMed  Google Scholar 

  24. Kamath R, Jiang Z, Sun G, Yalowich JC, Baskaran R (2007) c-Abl kinase regulates curcumin-induced cell death through activation of c-Jun N-terminal kinase. Mol Pharmacol 71:61–72

    Article  CAS  PubMed  Google Scholar 

  25. Mackenzie GG, Queisser N, Wolfson ML, Fraga CG, Adamo AM, Oteiza PI (2008) Curcumin induces cell-arrest and apoptosis in association with the inhibition of constitutively active NF-kappaB and STAT3 pathways in Hodgkin’s lymphoma cells. Int J Cancer 123:56–65

    Article  CAS  PubMed  Google Scholar 

  26. Shanker A, Brooks AD, Tristan CA, Wine JW, Elliott PJ, Yagita H, Takeda K, Smyth MJ, Murphy WJ, Sayers TJ (2008) Treating metastatic solid tumors with bortezomib and a tumor necrosis factor-related apoptosis-inducing ligand receptor agonist antibody. J Natl Cancer Inst 100:649–662

    Article  CAS  PubMed  Google Scholar 

  27. Hussain AR, Ahmed M, Al-Jomah NA, Khan AS, Manogaran P, Sultana M, Abubaker J, Platanias LC, Al-Kuraya KS, Uddin S (2008) Curcumin suppresses constitutive activation of nuclear factor-kappa B and requires functional Bax to induce apoptosis in Burkitt’s lymphoma cell lines. Mol Cancer Ther 7:3318–3329

    Article  CAS  PubMed  Google Scholar 

  28. Singh M, Singh N (2009) Molecular mechanism of curcumin induced cytotoxicity in human cervical carcinoma cells. Mol Cell Biochem 325:107–119

    Article  CAS  PubMed  Google Scholar 

  29. Pan W, Yang H, Cao C, Song X, Wallin B, Kivlin R, Lu S, Hu G, Di W, Wan Y (2008) AMPK mediates curcumin-induced cell death in CaOV3 ovarian cancer cells. Oncol Rep 20:1553–1559

    CAS  PubMed  Google Scholar 

  30. Ghosh AK, Kay NE, Secreto CR, Shanafelt TD (2009) Curcumin inhibits prosurvival pathways in chronic lymphocytic leukemia B cells and may overcome their stromal protection in combination with EGCG. Clin Cancer Res 15:1250–1258

    Article  CAS  PubMed  Google Scholar 

  31. Lin SS, Huang HP, Yang JS, Wu JY, Hsai TC, Lin CC, Lin CW, Kuo CL, Gibson Wood W, Chung JG (2008) DNA damage and endoplasmic reticulum stress mediated curcumin-induced cell cycle arrest and apoptosis in human lung carcinoma A-549 cells through the activation caspases cascade- and mitochondrial-dependent pathway. Cancer Lett 272:77–90

    Article  CAS  PubMed  Google Scholar 

  32. Bakhshi J, Weinstein L, Poksay KS, Nishinaga B, Bredesen DE, Rao RV (2008) Coupling endoplasmic reticulum stress to the cell death program in mouse melanoma cells: effect of curcumin. Apoptosis 13:904–914

    Article  CAS  PubMed  Google Scholar 

  33. Hail N Jr (2008) Mitochondrial reactive oxygen species affect sensitivity to curcumin-induced apoptosis. Free Radic Biol Med 44:1382–1393

    Article  PubMed  Google Scholar 

  34. Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrock R (2008) Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 7:464–473

    Article  CAS  PubMed  Google Scholar 

  35. Würdinger T, Tannous BA (2009) Glioma angiogenesis: towards novel RNA therapeutics. Cell Adh Migr 3:230–235

    PubMed  Google Scholar 

  36. Davis CD, Ross SA (2008) Evidence for dietary regulation of microRNA expression in cancer cells. Nutr Rev 66:477–482

    Article  PubMed  Google Scholar 

  37. Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S, Cordon-Cardo C, Pelletier J, Lowe SW (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428:332–337

    Article  CAS  PubMed  Google Scholar 

  38. Reuter S, Eifes S, Dicato M, Aggarwal BB, Diederich M (2008) Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol 76:1340–1351

    Article  CAS  PubMed  Google Scholar 

  39. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65:1631–1652

    Article  CAS  PubMed  Google Scholar 

  40. Lin JK (2007) Molecular targets of curcumin. Adv Exp Med Biol 595:227–243

    Article  PubMed  Google Scholar 

  41. Collett GP, Campbell FC (2004) Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis 25:2183–2189

    Article  CAS  PubMed  Google Scholar 

  42. Javvadi P, Segan AT, Tuttle SW, Koumenis C (2008) The chemopreventive agent curcumin is a potent radiosensitizer of human cervical tumor cells via increased reactive oxygen species production and overactivation of the mitogen-activated protein kinase pathway. Mol Pharmacol 73:1491–1501

    Article  CAS  PubMed  Google Scholar 

  43. Dhandapani KM, Mahesh VB, Brann DW (2007) Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFkappaB transcription factors. J Neurochem 102:522–538

    Article  CAS  PubMed  Google Scholar 

  44. Marín YE, Wall BA, Wang S, Namkoong J, Martino JJ et al (2007) Curcumin downregulates the constitutive activity of NF-kappaB and induces apoptosis in novel mouse melanoma cells. Melanoma Res 17:274–283

    Article  PubMed  Google Scholar 

  45. Lev-Ari S, Maimon Y, Strier L, Kazanov D, Arber N (2006) Down-regulation of prostaglandin E2 by curcumin is correlated with inhibition of cell growth and induction of apoptosis in human colon carcinoma cell lines. J Soc Integr Oncol 4:21–26

    PubMed  Google Scholar 

  46. Kim JH, Xu C, Keum YS, Reddy B, Conney A, Kong AN (2006) Inhibition of EGFR signaling in human prostate cancer PC-3 cells by combination treatment with beta-phenylethyl isothiocyanate and curcumin. Carcinogenesis 27:475–482

    Article  CAS  PubMed  Google Scholar 

  47. Sen S, Sharma H, Singh N (2005) Curcumin enhances Vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem Biophys Res Commun 331:1245–1252

    Article  CAS  PubMed  Google Scholar 

  48. Mukhopadhyay A, Banerjee S, Stafford LJ, Xia C, Liu M, Aggarwal BB (2002) Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene 21:8852–8861

    Article  CAS  PubMed  Google Scholar 

  49. Huang MT, Newmark HL, Frenkel KJ (1997) Inhibitory effects of curcumin on tumorigenesis in mice. J Cell Biochem Suppl 27:26–34

    Article  CAS  PubMed  Google Scholar 

  50. Greene HSN (1941) Heterologous transplantation of mammalian tumors: II. The transfer of human tumors to alien species. J Exp Med 73:475–486

    Article  PubMed  Google Scholar 

  51. Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB (2007) Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res 67:3853–3861

    Article  CAS  PubMed  Google Scholar 

  52. Chadalapaka G, Jutooru I, Chintharlapalli S, Papineni S, Smith R et al (2008) Curcumin decreases specificity protein expression in bladder cancer cells. Cancer Res 68:5345–5354

    Article  CAS  PubMed  Google Scholar 

  53. Bhandarkar SS, Arbiser JL (2007) Curcumin as an inhibitor of angiogenesis. Adv Exp Med Biol 595:185–195

    Article  PubMed  Google Scholar 

  54. Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB (2006) Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol 69:195–206

    CAS  PubMed  Google Scholar 

  55. Krejsgaard T, Vetter-Kauczok CS, Woetmann A, Lovato P, Labuda T et al (2006) Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia 20:1759–1766

    Article  CAS  PubMed  Google Scholar 

  56. Folkman J (1995) Clinical applications of research on angiogenesis. N Engl J Med 333:1757–1763

    Article  CAS  PubMed  Google Scholar 

  57. Choi H, Chun YS, Kim SW, Kim MS, Park JW (2006) Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition. Mol Pharmacol 70:1664–1671

    Article  CAS  PubMed  Google Scholar 

  58. Bae MK, Kim SH, Jeong JW, Lee YM et al (2006) Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol Rep 15:1557–1562

    CAS  PubMed  Google Scholar 

  59. Mohan R, Sivak J, Ashton P, Russo LA, Pham BQ et al (2000) Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. J Biol Chem 275:10405–10412

    Article  CAS  PubMed  Google Scholar 

  60. Jaiswal AS, Marlow BP, Gupta N, Narayan S (2002) Beta-catenin-mediated trans-activation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene 21:8414–8427

    Article  CAS  PubMed  Google Scholar 

  61. Kumar A, Dhawan S, Hardegen NJ, Aggarwal BB (1998) Curcumin (Diferuloylmethane) inhibition of tumor necrosis factor (TNF)-mediated adhesion of monocytes to endothelial cells by suppression of cell surface expression of adhesion molecules and of nuclear factor-kappaB activation. Biochem Pharmacol 55:775–783

    Article  CAS  PubMed  Google Scholar 

  62. Bachmeier BE, Mohrenz IV, Mirisola V, Schleicher E, Romeo F et al (2008) Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFkappaB. Carcinogenesis 29:779–789

    Article  CAS  PubMed  Google Scholar 

  63. Kuttan G, Kumar KB, Guruvayoorappan C, Kuttan R (2007) Antitumor, anti-invasion, and antimetastatic effects of curcumin. Adv Exp Med Biol 595:173–184

    Article  PubMed  Google Scholar 

  64. Mitra A, Chakrabarti J, Banerji A, Chatterjee A, Das BR (2006) Curcumin, a potential inhibitor of MMP-2 in human laryngeal squamous carcinoma cells HEp2. J Environ Pathol Toxicol Oncol 25:679–690

    CAS  PubMed  Google Scholar 

  65. Bachmeier B, Nerlich AG, Iancu CM, Cilli M, Schleicher E, Vené R et al (2007) The chemopreventive polyphenol Curcumin prevents hematogenous breast cancer metastases in immunodeficient mice. Cell Physiol Biochem 19:137–152

    Article  CAS  PubMed  Google Scholar 

  66. Hong JH, Ahn KS, Bae E, Jeon SS, Choi HY (2006) The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo. Prostate Cancer Prostatic Dis 9:147–152

    Article  CAS  PubMed  Google Scholar 

  67. Wang XM, Wu TX, Lee YS, Dionne RA (2006) Rofecoxib regulates the expression of genes related to the matrix metalloproteinase pathway in humans: implication for the adverse effects of cyclooxygenase-2 inhibitors. Clin Pharmacol Ther 79:303–315

    Article  CAS  PubMed  Google Scholar 

  68. Aggarwal BB, Shishodia S, Takada Y, Banerjee S, Newman RA et al (2005) Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 11:7490–7498

    Article  CAS  PubMed  Google Scholar 

  69. Chen HW, Lee JY, Huang JY, Wang CC, Chen WJ et al (2008) Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res 68:7428–7438

    Article  CAS  PubMed  Google Scholar 

  70. Vial T, Descotes J (2003) Immunosuppressive drugs and cancer. Toxicology 185:229–240

    Article  CAS  PubMed  Google Scholar 

  71. Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41:1955–1968

    Article  CAS  PubMed  Google Scholar 

  72. Bhattacharyya S, Mandal D, Sen GS, Pal S, Banerjee S, Lahiry L, Finke JH, Tannenbaum CS, Das T, Sa G (2007) Tumor-induced oxidative stress perturbs nuclear factor-kappaB activity-augmenting tumor necrosis factor-alpha-mediated T-cell death: protection by curcumin. Cancer Res 67:362–370

    Article  CAS  PubMed  Google Scholar 

  73. Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB et al (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14:4491–4499

    Article  CAS  PubMed  Google Scholar 

  74. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398

    CAS  PubMed  Google Scholar 

  75. Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895–2900

    CAS  PubMed  Google Scholar 

  76. Kuttan R, Sudheeran PC, Josph CD (1987) Turmeric and curcumin as topical agents in cancer therapy. Tumori 73:29–31

    CAS  PubMed  Google Scholar 

  77. Garcea G, Berry DP, Jones DJ, Singh R, Dennison AR et al (2005) Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomarkers Prev 14:120–125

    CAS  PubMed  Google Scholar 

  78. Pal S, Choudhuri T, Chattopadhyay S, Bhattacharya A, Datta GK, Das T, Sa G (2001) Mechanisms of curcumin-induced apoptosis of Ehrlich’s ascites carcinoma cells. Biochem Biophys Res Commun 288:658–665

    Article  CAS  PubMed  Google Scholar 

  79. McMichael AJ, McCall MG, Hartshore JM, Woodings TL (1980) Patterns of gastro-intestinal cancer in European migrants to Australia: the role of dietary change. Int J Cancer 5:431–437

    Article  Google Scholar 

  80. Wargovich MJ (1999) Nutrition and cancer: the herbal revolution. Curr Opin Clin Nutr Metab Care 2:421–424

    Article  CAS  PubMed  Google Scholar 

  81. Strimpakos AS, Sharma RA (2008) Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 10:511–545

    Article  CAS  PubMed  Google Scholar 

  82. Sharma RA, Euden SA, Platton SL et al (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10:6847–6854

    Article  CAS  PubMed  Google Scholar 

  83. Das T, Sa G, Hilston C et al (2008) GM1 and tumor necrosis factor-alpha, overexpressed in renal cell carcinoma, synergize to induce T-cell apoptosis. Cancer Res 68:2014–2023

    Article  CAS  PubMed  Google Scholar 

  84. Das T, Sa G, Paszkiewicz-Kozik E et al (2008) Renal cell carcinoma tumors induce T cell apoptosis through receptor-dependent and receptor-independent pathways. J Immunol 180:4687–4696

    CAS  PubMed  Google Scholar 

  85. Sa G, Das T, Moon C, Hilston CM, Rayman PA, Rini BI, Tannenbaum CS, Finke JH (2009) GD3, an overexpressed tumor-derived ganglioside, mediates the apoptosis of activated but not resting T cells. Cancer Res 69:3095–3104

    Article  CAS  PubMed  Google Scholar 

  86. Jagetia GC, Aggarwal BB (2007) “Spicing up” of the immune system by curcumin. J Clin Immunol 27:19–35

    Article  CAS  PubMed  Google Scholar 

  87. Bhattacharyya S, Mandal D, Saha B, Sen GS, Das T, Sa G (2007) Curcumin prevents tumor-induced T cell apoptosis through Stat-5a-mediated Bcl-2 induction. J Biol Chem 282:15954–15964

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was performed in the authors’ laboratories, and was supported by research grants from CSIR, DST, ICMR, and DBT, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, T., Sa, G., Saha, B. et al. Multifocal signal modulation therapy of cancer: ancient weapon, modern targets. Mol Cell Biochem 336, 85–95 (2010). https://doi.org/10.1007/s11010-009-0269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0269-0

Keywords

Navigation