Skip to main content
Log in

Mechanism of noradrenaline-induced stimulation of Na–K ATPase activity in the rat brain: implications on REM sleep deprivation-induced increase in brain excitability

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Rapid eye movement (REM) sleep is a unique phenomenon expressed in all higher forms of animals. Its quantity varies in different species and with ageing; it is also affected in several psycho-somatic disorders. Several lines of studies showed that after REM sleep loss, the levels of noradrenaline (NA) increase in the brain. The NA in the brain modulates neuronal Na–K ATPase activity, which helps maintaining the brain excitability status. The detailed mechanism of increase in NA level after REM sleep loss and the effect of NA on stimulation of Na–K ATPase in the neurons have been discussed. The findings have been reviewed and discussed with an aim to understand the role of REM sleep in maintaining brain excitability status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphatase

Ca2+ :

Calcium ion

cAMP:

Cyclic adenosine monophosphate

DBH:

Dopamine β-hydroxylase

DLC:

Digitalis-like compound

EDTA:

Ethylene diamine tetra acetic acid

EGTA:

Ethylene glycol tetra acetic acid

ER:

Endoplasmic reticulum

GABA:

Gamma amino butyric acid

H2O2 :

Hydrogen peroxide

IP3:

Inositol phosphate 3

K+ :

Potassium ion

LC:

Locus coeruleus

LP:

Lipid peroxidation

Mg2+ :

Magnesium ion

mRNA:

Messenger ribonucleic acid

NA:

Noradrenaline

Na+ :

Sodium ion

Na K ATPase:

Sodium potassium adenosine triphosphatase

NMDA:

N-methyl d-aspartic acid

PLC:

Phospholipase C

PNMT:

Phenylethanolamine N-methyl transferase

REM:

Rapid eye movement

REMSD:

Rapid eye movement sleep deprivation

SF:

Synaptosomal factor

TH:

Tyrosine hydroxylase

References

  1. Abashidze S, Jariashvili T, Kometiani Z (2001) The effect of EGTA and Ca++ in regulation of the brain Na/K-ATPase by noradrenaline. BMC Biochem 2:8–12

    CAS  PubMed  Google Scholar 

  2. Adam-Vizi V, Seregi A (1982) Receptor independent stimulatory effect of noradrenaline on Na, K-ATPase in rat brain homogenate. Role of lipid peroxidation. Biochem Pharmacol 31:2231–2236

    CAS  PubMed  Google Scholar 

  3. Adya HV, Mallick BN (2000) Uncompetitive stimulation of rat brain Na-K ATPase activity by rapid eye movement sleep deprivation. Neurochem Int 36:249–253

    CAS  PubMed  Google Scholar 

  4. Allison T, Van TH (1970) Sleep in the moles, Scalopus aquaticus and Condylura cristata. Exp Neurol 27:564–578

    CAS  PubMed  Google Scholar 

  5. Anupama Adya HV, Mallick BN (1998) Comparison of Na–K ATPase activity in rat brain synaptosome under various conditions. Neurochem Int 33:283–286

    CAS  PubMed  Google Scholar 

  6. Aperia A, Bertorello A, Seri I (1987) Dopamine causes inhibition of Na+-K+-ATPase activity in rat proximal convoluted tubule segments. Am J Physiol 252:F39–F45

    CAS  PubMed  Google Scholar 

  7. Asan E (1998) The catecholaminergic innervation of the rat amygdala. Adv Anat Embryol Cell Biol 142:1–118

    CAS  PubMed  Google Scholar 

  8. Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274

    CAS  PubMed  Google Scholar 

  9. Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886

    CAS  PubMed  Google Scholar 

  10. Aston-Jones G, Bloom FE (1981) Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1:887–900

    CAS  PubMed  Google Scholar 

  11. Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101

    CAS  PubMed  Google Scholar 

  12. Bagrov AY, Shapiro JI (2008) Endogenous digitalis: pathophysiologic roles and therapeutic applications. Nat Clin Pract Nephrol 4:378–392

    CAS  PubMed  Google Scholar 

  13. Ballerini L, Bracci E, Nistri A (1997) Pharmacological block of the electrogenic sodium pump disrupts rhythmic bursting induced by strychnine and bicuculline in the neonatal rat spinal cord. J Neurophysiol 77:17–23

    CAS  PubMed  Google Scholar 

  14. Baskey G, Singh A, Sharma R, Mallick BN (2009) REM sleep deprivation-induced noradrenaline stimulates neuronal and inhibits glial Na-K ATPase in rat brain: in vivo and in vitro studies. Neurochem Int 54:65–71

    CAS  PubMed  Google Scholar 

  15. Baxter-Lowe LA, Guo JZ, Bergstrom EE, Hokin LE (1989) Molecular cloning of the Na, K-ATPase alpha-subunit in developing brine shrimp and sequence comparison with higher organisms. FEBS Lett 257:181–187

    CAS  PubMed  Google Scholar 

  16. Bergmann BM, Gilliland MA, Feng PF, Russell DR, Shaw P, Wright M, Rechtschaffen A, Alverdy JC (1996) Are physiological effects of sleep deprivation in the rat mediated by bacterial invasion? Sleep 19:554–562

    CAS  PubMed  Google Scholar 

  17. Berne-Fromell K, Fromell H, Lundkvist S, Lundkvist P (1987) Is multiple sclerosis the equivalent of Parkinson’s disease for noradrenaline? Med Hypotheses 23:409–415

    CAS  PubMed  Google Scholar 

  18. Besirli CG, Gong TW, Lomax MI (1997) Novel beta 3 isoform of the Na, K-ATPase beta subunit from mouse retina. Biochim Biophys Acta 1350:21–26

    CAS  PubMed  Google Scholar 

  19. Bhargava M, Lei J, Mariash CN, Ingbar DH (2007) Thyroid hormone rapidly stimulates alveolar Na, K-ATPase by activation of phosphatidylinositol 3-kinase. Curr Opin Endocrinol Diabetes Obes 14:416–420

    CAS  PubMed  Google Scholar 

  20. Blanco G, Mercer RW (1997) Regulation of the alpha 2 beta 1 and alpha 3 beta 1 isozymes of the Na, K-ATPase by Ca2+, PKA, and PKC. Ann N Y Acad Sci 834:572–575

    CAS  PubMed  Google Scholar 

  21. Bockaert J, Hamburger V, Sladeczek F (1990) Molecular pharmacology of adrenergic receptors and their cellular localization in brain cells in culture. In: Heal DJ, Marsden CA (eds) The pharmacology of noradrenaline in the central nervous system, 1st edn. Oxford University Press, NewYork, pp 76–117

    Google Scholar 

  22. Boldyrev A (1992) Functional activity of tissue Na, K-ATPase in health and in pathology. Ukr Biokhim Zh 64:3–10

    CAS  PubMed  Google Scholar 

  23. Borsick M, Rajkhowa T, Taub M (2006) Evidence for post-transcriptional regulation of Na, K-ATPase by prostaglandin E1. Biochem Biophys Res Commun 345:739–745

    CAS  PubMed  Google Scholar 

  24. Celsi G, Wang ZM (1993) Regulation of Na+, K(+)-ATPase gene expression: a model to study terminal differentiation. Pediatr Nephrol 7:630–634

    CAS  PubMed  Google Scholar 

  25. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    CAS  PubMed  Google Scholar 

  26. Chu NS, Bloom FE (1974) Activity patterns of catecholamine-containing pontine neurons in the dorso-lateral tegmentum of unrestrained cats. J Neurobiol 5:527–544

    CAS  PubMed  Google Scholar 

  27. Clark FM, Proudfit HK (1991) The projection of locus coeruleus neurons to the spinal cord in the rat determined by anterograde tracing combined with immunocytochemistry. Brain Res 538:231–245

    CAS  PubMed  Google Scholar 

  28. Clausen T, Flatman JA (1977) The effect of catecholamines on Na-K transport and membrane potential in rat soleus muscle. J Physiol 270:383–414

    CAS  PubMed  Google Scholar 

  29. Clausen T, Flatman JA (1980) Beta 2-adrenoceptors mediate the stimulating effect of adrenaline on active electrogenic Na-K-transport in rat soleus muscle. Br J Pharmacol 68:749–755

    CAS  PubMed  Google Scholar 

  30. Cohen HB, Dement WC (1965) Sleep: changes in threshold to electroconvulsive shock in rats after deprivation of “paradoxical” phase. Science 150:1318–1319

    CAS  PubMed  Google Scholar 

  31. Cohen J, Eckstein L, Gutman Y (1980) The mechanism of alpha-adrenergic inhibition of catecholamine release. Br J Pharmacol 71:135–142

    CAS  PubMed  Google Scholar 

  32. Cutler CP, Sanders IL, Hazon N, Cramb G (1995) Primary sequence, tissue specificity and expression of the Na+, K(+)-ATPase alpha 1 subunit in the European eel (Anguilla anguilla). Comp Biochem Physiol B 111:567–573

    CAS  PubMed  Google Scholar 

  33. Das G, Mallick BN (2008) Noradrenaline acting on alpha1-adrenoceptor mediates REM sleep deprivation-induced increased membrane potential in rat brain synaptosomes. Neurochem Int 52:734–740

    CAS  PubMed  Google Scholar 

  34. Das G, Gopalakrishnan A, Faisal M, Mallick BN (2008) Stimulatory role of calcium in rapid eye movement sleep deprivation-induced noradrenaline-mediated increase in Na-K-ATPase activity in rat brain. Neuroscience 155:76–89

    CAS  PubMed  Google Scholar 

  35. Davis PW, Vincenzi FF (1971) Ca-ATPase activation and NaK-ATPase inhibition as a function of calcium concentration in human red cell membranes. Life Sci II 10:401–406

    CAS  PubMed  Google Scholar 

  36. Delprat B, Schaer D, Roy S, Wang J, Puel JL, Geering K (2007) FXYD6 is a novel regulator of Na, K-ATPase expressed in the inner ear. J Biol Chem 282:7450–7456

    CAS  PubMed  Google Scholar 

  37. Desaiah D, Ho IK (1976) Effect of biogenic amines and GABA on ATPase activities in mouse tissue. Eur J Pharmacol 40:255–261

    CAS  PubMed  Google Scholar 

  38. Despa S, Islam MA, Pogwizd SM, Bers DM (2002) Intracellular [Na+] and Na+ pump rate in rat and rabbit ventricular myocytes. J Physiol 539:133–143

    CAS  PubMed  Google Scholar 

  39. Devynck MA, Pernollet MG, Rosenfeld JB, Meyer P (1983) Measurement of digitalis-like compound in plasma: application in studies of essential hypertension. Br Med J 287:631–634

    CAS  Google Scholar 

  40. Epstein FH, Whittam R (1966) The mode of inhibition by calcium of cell-membrane adenosine-triphosphatase activity. Biochem J 99:232–238

    CAS  PubMed  Google Scholar 

  41. Ewart HS, Klip A (1995) Hormonal regulation of the Na(+)-K(+)-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am J Physiol 269:C295–C311

    CAS  PubMed  Google Scholar 

  42. Fambrough DM, Bayne EK (1983) Multiple forms of (Na+ + K+)-ATPase in the chicken. Selective detection of the major nerve, skeletal muscle, and kidney form by a monoclonal antibody. J Biol Chem 258:3926–3935

    CAS  PubMed  Google Scholar 

  43. Flanigan WF Jr (1973) Sleep and wakefulness in iguanid lizards, Ctenosaura pectinata and Iguana iguana. Brain Behav Evol 8:401–436

    PubMed  Google Scholar 

  44. Flanigan WF Jr (1974) Sleep and wakefulness in chelonian reptiles. II. The red-footed tortoise, Geochelone carbonaria. Arch Ital Biol 112:253–277

    PubMed  Google Scholar 

  45. Flanigan WF Jr, Knight CP, Hartse KM, Rechtschaffen A (1974) Sleep and wakefulness in chelonian reptiles. I. The box turtle, Terrapene carolina. Arch Ital Biol 112:227–252

    PubMed  Google Scholar 

  46. Foote SL, Aston-Jones G, Bloom FE (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci USA 77:3033–3037

    CAS  PubMed  Google Scholar 

  47. Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914

    CAS  PubMed  Google Scholar 

  48. Gagnon JF, Montplaisir J, Bedard MA (2002) Rapid-eye-movement sleep disorders in Parkinson’s disease. Rev Neurol (Paris) 158:135–152

    CAS  Google Scholar 

  49. Geering K (2006) FXYD proteins: new regulators of Na-K-ATPase. Am J Physiol Renal Physiol 290:F241–F250

    CAS  PubMed  Google Scholar 

  50. Geering K, Kraehenbuhl JP, Rossier BC (1987) Maturation of the catalytic alpha-subunit of Na, K-ATPase during intracellular transport. J Cell Biol 105:2613–2619

    CAS  PubMed  Google Scholar 

  51. Gilbert JC, Wyllie MG, Davison DV (1975) Nerve terminal ATPase as possible trigger for neurotransmitter release. Nature 255:237–238

    CAS  PubMed  Google Scholar 

  52. Gloor S (1989) Cloning and nucleotide sequence of the mouse Na, K-ATPase beta-subunit. Nucleic Acids Res 17:10117

    CAS  PubMed  Google Scholar 

  53. Glynn IM, Karlish SJ (1975) ATP hydrolysis associated with an uncoupled efflux of Na through the Na pump. J Physiol 250:33P–34P

    CAS  PubMed  Google Scholar 

  54. Godfraind T, Koch MC, Verbeke N (1974) The action of EGTA on the catecholamines stimulation of rat brain Na-K-ATPase. Biochem Pharmacol 23:3505–3511

    CAS  PubMed  Google Scholar 

  55. Goldstein I, Levy T, Galili D, Ovadia H, Yirmiya R, Rosen H, Lichtstein D (2006) Involvement of Na(+), K(+)-ATPase and endogenous digitalis-like compounds in depressive disorders. Biol Psychiatry 60:491–499

    CAS  PubMed  Google Scholar 

  56. Good PJ, Richter K, Dawid IB (1990) A nervous system-specific isotype of the beta subunit of Na+, K(+)-ATPase expressed during early development of Xenopus laevis. Proc Natl Acad Sci USA 87:9088–9092

    CAS  PubMed  Google Scholar 

  57. Gulyani S, Mallick BN (1993) Effect of rapid eye movement sleep deprivation on rat brain Na-K ATPase activity. J Sleep Res 2:45–50

    PubMed  Google Scholar 

  58. Gulyani S, Mallick BN (1995) Possible mechanism of rapid eye movement sleep deprivation induced increase in Na-K ATPase activity. Neuroscience 64:255–260

    CAS  PubMed  Google Scholar 

  59. Heal DJ, Marsden CA (1990) The pharmacology of noradrenaline in the central nervous system. Oxford University Press, New York

    Google Scholar 

  60. Hexum TD (1977) The effect of catecholamines on transport (Na, K) adenosine triphosphatase. Biochem Pharmacol 26:1221–1227

    CAS  PubMed  Google Scholar 

  61. Hodgkin AL, Huxley AF (1952) Movement of sodium and potassium ions during nervous activity. Cold Spring Harb Symp Quant Biol 17:43–52

    CAS  PubMed  Google Scholar 

  62. Hodgkin AL, Huxley AF (1990) A quantitative description of membrane current and its application to conduction and excitation in nerve. 1952. Bull Math Biol 52:25–71

    CAS  PubMed  Google Scholar 

  63. Hokfelt T, Johansson O, Goldstein M (1984) Chemical anatomy of the brain. Science 225:1326–1337

    CAS  PubMed  Google Scholar 

  64. Horisberger JD (2004) Recent insights into the structure and mechanism of the sodium pump. Physiology (Bethesda) 19:377–387

    CAS  Google Scholar 

  65. Horowitz B, Eakle KA, Scheiner-Bobis G, Randolph GR, Chen CY, Hitzeman RA, Farley RA (1990) Synthesis and assembly of functional mammalian Na, K-ATPase in yeast. J Biol Chem 265:4189–4192

    CAS  PubMed  Google Scholar 

  66. Hundal HS, Marette A, Mitsumoto Y, Ramlal T, Blostein R, Klip A (1992) Insulin induces translocation of the alpha2 and beta 1 subunits of the Na-K ATPase from intracellular compartment to the plasma membrane in mammalian skeletal muscle. J Biol Chem 267:5040–5043

    CAS  PubMed  Google Scholar 

  67. Ishida Y, Chused TM (1993) Lack of voltage sensitive potassium channels and generation of membrane potential by sodium potassium ATPase in murine T lymphocytes. J Immunol 151:610–620

    CAS  PubMed  Google Scholar 

  68. Jacobs BL (1986) Single unit activity of brain monoamine-containing neurons in freely moving animals. Ann N Y Acad Sci 473:70–77

    CAS  PubMed  Google Scholar 

  69. Johenson SW, Seutin V, North RA (1992) Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. Science 258:665–667

    Google Scholar 

  70. Jorgensen PL, Skou JC, Solomonson LP (1971) Purification and characterization of (Na+ + K+)-ATPase. II. Preparation by zonal centrifugation of highly active (Na+ + K+)-ATPase from the outer medulla of rabbit kidneys. Biochim Biophys Acta 233:381–394

    CAS  PubMed  Google Scholar 

  71. Kaplan JH (2002) Biochemistry of Na, K-ATPase. Annu Rev Biochem 71:511–535

    CAS  PubMed  Google Scholar 

  72. Kaur S, Saxena RN, Mallick BN (1997) GABA in locus coeruleus regulates spontaneous rapid eye movement sleep by acting on GABAA receptors in freely moving rats. Neurosci Lett 223:105–108

    CAS  PubMed  Google Scholar 

  73. Kaur S, Panchal M, Faisal M, Madan V, Nangia P, Mallick BN (2004) Long term blocking of GABA-A receptor in locus coeruleus by bilateral microinfusion of picrotoxin reduced rapid eye movement sleep and increased brain Na-K ATPase activity in freely moving normally behaving rats. Behav Brain Res 151:185–190

    CAS  PubMed  Google Scholar 

  74. Kent RB, Fallows DA, Geissler E, Glaser T, Emanuel JR, Lalley PA, Levenson R, Housman DE (1987) Genes encoding alpha and beta subunits of Na, K-ATPase are located on three different chromosomes in the mouse. Proc Natl Acad Sci USA 84:5369–5373

    CAS  PubMed  Google Scholar 

  75. Kometiani Z, Jariashvili T (2000) The Na/K-ATPase regulation by neurotransmitters in ontogeny. Arch Physiol Biochem 108:360–370

    CAS  PubMed  Google Scholar 

  76. Krishnan AV, Lin CS, Kiernan MC (2008) Activity-dependent excitability changes suggest Na+/K+ pump dysfunction in diabetic neuropathy. Brain 131:1209–1216

    PubMed  Google Scholar 

  77. Kuhlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5:282–295

    PubMed  Google Scholar 

  78. Kushida CA, Bergmann BM, Rechtschaffen A (1989) Sleep deprivation in the rat: IV. Paradoxical sleep deprivation. Sleep 12:22–30

    CAS  PubMed  Google Scholar 

  79. Kushida CA, Everson CA, Suthipinittharm P, Sloan J, Soltani K, Bartnicke B, Bergmann BM, Rechtschaffen A (1989) Sleep deprivation in the rat: VI. Skin changes. Sleep 12:42–46

    CAS  PubMed  Google Scholar 

  80. Laughery MD, Todd ML, Kaplan JH (2003) Mutational analysis of alpha-beta subunit interactions in the delivery of Na, K-ATPase heterodimers to the plasma membrane. J Biol Chem 278:34794–34803

    CAS  PubMed  Google Scholar 

  81. Lee SL, Phillis JW (1977) Stimulation of cerebral cortical synaptosomal Na-K-ATPase by biogenic amines. Can J Physiol Pharmacol 55:961–964

    CAS  PubMed  Google Scholar 

  82. Lemas MV, Fambrough DM (1993) Sequence analysis of DNA encoding an avian Na+, K(+)-ATPase beta 2-subunit. Biochim Biophys Acta 1149:339–342

    CAS  PubMed  Google Scholar 

  83. Lo CS, Klein LE (1992) Thyroidal and steroidal regulation of Na+, K(+)-ATPase. Semin Nephrol 12:62–66

    CAS  PubMed  Google Scholar 

  84. Lubarski I, Karlish SJ, Garty H (2007) Structural and functional interactions between FXYD5 and the Na+-K+-ATPase. Am J Physiol Renal Physiol 293:F1818–F1826

    CAS  PubMed  Google Scholar 

  85. Lucking K, Nielsen JM, Pedersen PA, Jorgensen PL (1996) Na-K-ATPase isoform (alpha 3, alpha 2, alpha 1) abundance in rat kidney estimated by competitive RT-PCR and ouabain binding. Am J Physiol 271:F253–F260

    CAS  PubMed  Google Scholar 

  86. Lytton J, Lin JC, Guidotti G (1985) Identification of two molecular forms of (Na+, K+)-ATPase in rat adipocytes. Relation to insulin stimulation of the enzyme. J Biol Chem 260:1177–1184

    CAS  PubMed  Google Scholar 

  87. Majumdar S, Mallick BN (2003) Increased levels of tyrosine hydroxylase and glutamic acid decarboxylase in locus coeruleus neurons after rapid eye movement sleep deprivation in rats. Neurosci Lett 338:193–196

    CAS  PubMed  Google Scholar 

  88. Majumdar S, Faisal M, Madan V, Mallick BN (2003) Increased turnover of Na-K ATPase molecules in rat brain after rapid eye movement sleep deprivation. J Neurosci Res 73:870–875

    CAS  PubMed  Google Scholar 

  89. Malfatti CR, Royes LF, Francescato L, Sanabria ER, Rubin MA, Cavalheiro EA, Mello CF (2003) Intrastriatal methylmalonic acid administration induces convulsions and TBARS production, and alters Na+, K+-ATPase activity in the rat striatum and cerebral cortex. Epilepsia 44:761–767

    CAS  PubMed  Google Scholar 

  90. Mallick BN, Adya HV (1999) Norepinephrine induced alpha-adrenoceptor mediated increase in rat brain Na-K ATPase activity is dependent on calcium ion. Neurochem Int 34:499–507

    CAS  PubMed  Google Scholar 

  91. Mallick BN, Gulyani S (1993) Rapid eye movement sleep deprivation increases chloride-sensitive Mg-ATPase activity in the rat brain. Pharmacol Biochem Behav 45:359–362

    CAS  PubMed  Google Scholar 

  92. Mallick BN, Gulyani S (1996) Alterations in synaptosomal calcium concentrations after rapid eye movement sleep deprivation in rats. Neuroscience 75:729–736

    CAS  PubMed  Google Scholar 

  93. Mallick BN, Siegel JM, Fahringer H (1990) Changes in pontine unit activity with REM sleep deprivation. Brain Res 515:94–98

    CAS  PubMed  Google Scholar 

  94. Mallick BN, Fahringer HM, Wu MF, Siegel JM (1991) REM sleep deprivation reduces auditory evoked inhibition of dorsolateral pontine neurons. Brain Res 552:333–337

    CAS  PubMed  Google Scholar 

  95. Mallick BN, Thakkar M, Gulyani S (1994) Rapid eye movement sleep deprivation induced alteration in neuronal excitability: possible role of norepinephrine. In: Mallick BN, Singh R (eds) Environment and physiology, 1st edn. Narosa, New Delhi, pp 196–203

    Google Scholar 

  96. Mallick BN, Thakkar M, Gangabhagirathi R (1995) Rapid eye movement sleep deprivation decreases membrane fluidity in the rat brain. Neurosci Res 22:117–122

    CAS  PubMed  Google Scholar 

  97. Mallick BN, Anupama Adya HV, Thankachan S (1999) REM sleep deprivation alters factors affecting neuronal excitability: role of norepinephrine and its possible mechanism of action. In: Mallick BN, Inoue S (eds) Rapid eye movement sleep, 1st edn. Marcel Dekker, New York, pp 338–354

  98. Mallick BN, Adya HV, Faisal M (2000) Norepinephrine-stimulated increase in Na+, K+-ATPase activity in the rat brain is mediated through alpha1A-adrenoceptor possibly by dephosphorylation of the enzyme. J Neurochem 74:1574–1578

    CAS  PubMed  Google Scholar 

  99. Mallick BN, Kaur S, Saxena RN (2001) Interactions between cholinergic and GABAergic neurotransmitters in and around the locus coeruleus for the induction and maintenance of rapid eye movement sleep in rats. Neuroscience 104:467–485

    CAS  PubMed  Google Scholar 

  100. Mallick BN, Majumdar S, Faisal M, Yadav V, Madan V, Pal D (2002) Role of norepinephrine in the regulation of rapid eye movement sleep. J Biosci 27:539–551

    CAS  PubMed  Google Scholar 

  101. Marcaida G, Kosenko E, Minana MD, Grisolia S, Felipo V (1996) Glutamate induces a calcineurin-mediated dephosphorylation of Na+, K(+)-ATPase that results in its activation in cerebellar neurons in culture. J Neurochem 66:99–104

    Article  CAS  PubMed  Google Scholar 

  102. Marks GA, Shaffery JP, Oksenberg A, Speciale SG, Roffwarg HP (1995) A functional role for REM sleep in brain maturation. Behav Brain Res 69:1–11

    CAS  PubMed  Google Scholar 

  103. Martin-Vasallo P, Dackowski W, Emanuel JR, Levenson R (1989) Identification of a putative isoform of the Na, K-ATPase beta subunit. Primary structure and tissue-specific expression. J Biol Chem 264:4613–4618

    CAS  PubMed  Google Scholar 

  104. Matsuoka T, Kato M, Kako KJ (1990) Effects of oxidants on Na-K ATPase and its reversal. Basic Res Cardiol 85:330–341

    CAS  PubMed  Google Scholar 

  105. McCarren M, Alger BE (1987) Sodium-potassium pump inhibitors increase neuronal excitability in the rat hippocampal slice: role of a Ca2+-dependent conductance. J Neurophysiol 57:496–509

    CAS  PubMed  Google Scholar 

  106. McGrail KM, Phillips JM, Sweadner KJ (1991) Immunofluorescent localization of three Na, K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na, K-ATPase. J Neurosci 11:381–391

    CAS  PubMed  Google Scholar 

  107. Mirmiran M (1986) The importance of fetal/neonatal REM sleep. Eur J Obstet Gynecol Reprod Biol 21:283–291

    CAS  PubMed  Google Scholar 

  108. Mirmiran M, Van Someren E (1993) Symposium: normal and abnormal REM sleep regulation: the importance of REM sleep for brain maturation. J Sleep Res 2:188–192

    PubMed  Google Scholar 

  109. Mirmiran M, Scholtens J, van de Poll NE, Uylings HB, van der Gugten GJ, Boer GJ (1983) Effects of experimental suppression of active (REM) sleep during early development upon adult brain and behavior in the rat. Brain Res 283:277–286

    CAS  PubMed  Google Scholar 

  110. Mirmiran M, Maas YG, Ariagno RL (2003) Development of fetal and neonatal sleep and circadian rhythms. Sleep Med Rev 7:321–334

    PubMed  Google Scholar 

  111. Moller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286:1–51

    PubMed  Google Scholar 

  112. Morel P, Tallineau C, Pontcharraud R, Piriou A, Huguet F (1998) Effects of 4-hydroxynonenal, a lipid peroxidation product, on dopamine transport and Na+/K+ATPase in rat striatal synaptosomes. Neurochem Int 33:531–540

    CAS  PubMed  Google Scholar 

  113. Murtazina DA, Petukhov SP, Rubtsov AM, Storey KB, Lopina OD (2001) Phosphorylation of the alpha-subunit of Na, K-ATPase from duck salt glands by cAMP-dependent protein kinase inhibits the enzyme activity. Biochemistry (Mosc) 66:865–874

    CAS  Google Scholar 

  114. Nesher M, Shpalansky U, Rosen H, Lichstein D (2007) The digitalis like steroid hormone: new mechanism of action and biological significance. Life Sci 80:2093–2107

    CAS  PubMed  Google Scholar 

  115. Pal D, Madan V, Mallick BN (2005) Neural mechanism of rapid eye movement sleep generation: Cessation of locus coeruleus neurons is a necessity. Sheng Li Xue Bao 57:401–413

    CAS  PubMed  Google Scholar 

  116. Palmgren MG, Axelsen KB (1998) Evolution of P-type ATPases. Biochim Biophys Acta 1365:37–45

    CAS  PubMed  Google Scholar 

  117. Perez DM (2005) The adrenergic receptors in the 21st century. Humana, Totowa

    Google Scholar 

  118. Pihakaski-Maunsbach K, Nonaka S, Maunsbach AB (2008) Expression and trafficking of the gamma subunit of Na, K-ATPase in hypertonically challenged IMCD3 cells. Acta Histochem Cytochem 41:105–114

    CAS  PubMed  Google Scholar 

  119. Porkka-Heiskanen T, Smith SE, Taira T, Urban JH, Levine JE, Turek FW, Stenberg D (1995) Noradrenergic activity in rat brain during rapid eye movement sleep deprivation and rebound sleep. Am J Physiol 268:R1456–R1463

    CAS  PubMed  Google Scholar 

  120. Pressley TA (1992) Phylogenetic conservation of isoform-specific regions within alpha-subunit of Na(+)-K(+)-ATPase. Am J Physiol 262:C743–C751

    CAS  PubMed  Google Scholar 

  121. Pujol JF, Mouret J, Jouvet M, Glowinski J (1968) Increased turnover of cerebral norepinephrine during rebound of paradoxical sleep in the rat. Science 159:112–114

    CAS  Google Scholar 

  122. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    CAS  PubMed  Google Scholar 

  123. Rauchova H, Drahota Z, Koudelova J (1999) The role of membrane fluidity changes and thiobarbituric acid-reactive substances production in the inhibition of cerebral cortex Na+/K+-ATPase activity. Physiol Res 48:73–78

    CAS  PubMed  Google Scholar 

  124. Sagales T, Domino EF (1973) Effects of stress and REM sleep deprivation on the patterns of avoidance learning and brain acetylcholine in the mouse. Psychopharmacologia 29:307–315

    CAS  PubMed  Google Scholar 

  125. Saucerman JJ, Brunton LL, Michailova AP, McCulloch AD (2003) Modeling beta-adrenergic control of cardiac myocyte contractility in silico. J Biol Chem 278:47997–48003

    CAS  PubMed  Google Scholar 

  126. Schaefer A, Unyi G, Pfeifer AK (1972) The effects of a soluble factor and of catecholamines on the activity of adenosine triphosphatase in subcellular fractions of rat brain. Biochem Pharmacol 21:2289–2294

    CAS  PubMed  Google Scholar 

  127. Schneider BG, Shyjan AW, Levenson R (1991) Co-localization and polarized distribution of Na, K-ATPase alpha 3 and beta 2 subunits in photoreceptor cells. J Histochem Cytochem 39:507–517

    CAS  PubMed  Google Scholar 

  128. Shamraj OI, Lingrel JB (1994) A putative fourth Na+, K(+)-ATPase alpha-subunit gene is expressed in testis. Proc Natl Acad Sci USA 91:12952–12956

    CAS  PubMed  Google Scholar 

  129. Shouse MN, Staba RJ, Saquib SF, Farber PR (2000) Monoamines and sleep: microdialysis findings in pons and amygdala. Brain Res 860:181–189

    CAS  PubMed  Google Scholar 

  130. Siegel JM, Manger PR, Nienhuis R, Fahringer HM, Shalita T, Pettigrew JD (1999) Sleep in the platypus. Neuroscience 91:391–400

    CAS  PubMed  Google Scholar 

  131. Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    CAS  PubMed  Google Scholar 

  132. Skou JC (1965) Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol Rev 45:596–617

    CAS  PubMed  Google Scholar 

  133. Smith C, Rose GM (1997) Posttraining paradoxical sleep in rats is increased after spatial learning in the Morris water maze. Behav Neurosci 111:1197–1204

    CAS  PubMed  Google Scholar 

  134. Stabach PR, Devarajan P, Stankewich MC, Bannykh S, Morrow JS (2008) Ankyrin facilitates intracellular trafficking of alpha1-Na+-K+-ATPase in polarized cells. Am J Physiol Cell Physiol 295:C1202–C1214

    CAS  PubMed  Google Scholar 

  135. Stein WD (2002) Cell volume homeostasis: ionic and nonionic mechanisms. The sodium pump in the emergence of animal cells. Int Rev Cytol 215:231–258

    CAS  PubMed  Google Scholar 

  136. Svoboda P, Mosinger B (1981) Catecholamines and the brain microsomal Na, K-adenosinetriphosphatase-I. Protection against lipoperoxidative damage. Biochem Pharmacol 30:427–432

    CAS  PubMed  Google Scholar 

  137. Swann AC (1983) Stimulation of brain Na+, K+-ATPase by norepinephrine in vivo: prevention by receptor antagonists and enhancement by repeated stimulation. Brain Res 260:338–341

    CAS  PubMed  Google Scholar 

  138. Takahashi M, Tsuchiya K, Komatsu Y, Nihei H (1997) A role for Na/K adenosine triphosphatase in the pathogenesis of cyst formation in experimental polycystic kidney disease. J Lab Clin Med 129:517–526

    CAS  PubMed  Google Scholar 

  139. Thakkar M, Mallick BN (1993) Effect of rapid eye movement sleep deprivation on rat brain monoamine oxidases. Neuroscience 55:677–683

    CAS  PubMed  Google Scholar 

  140. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469–474

    CAS  PubMed  Google Scholar 

  141. Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655

    CAS  PubMed  Google Scholar 

  142. Tsakadze LG, Kometiani ZP (1989) Regulation of Na,K-ATPase by synaptosomal factors and neurotransmitters. Nauchnye Doki Vyss Shkoly Biol Nauki, 8:16–20

    Google Scholar 

  143. Vijayan R, Subbarao N, Mallick BN (2007) In silico modelling of α1A-adrenoceptor interaction of its normal and mutated active sites with noradrenaline as well as its agonist and antagonist. Am J Biochem Biotech 3:216–224

    CAS  Google Scholar 

  144. Wang YC, Huang RC (2006) Effect off sodium pump activity on spontaneous firing in the neurons of the rat suprachiasmatic nucleus. J Neurophysiol 96:109–118

    CAS  PubMed  Google Scholar 

  145. Wang XQ, Xiao AY, Sheline C, Hyrc K, Yang A, Goldberg MP, Choi DW, Yu SP (2003) Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J Cell Sci 116:2099–2110

    CAS  PubMed  Google Scholar 

  146. Wang XQ, Xiao AY, Yang A, LaRose L, Wei L, Yu SP (2003) Block of Na+, K+-ATPase and induction of hybrid death by 4-aminopyridine in cultured cortical neurons. J Pharmacol Exp Ther 305:502–506

    CAS  PubMed  Google Scholar 

  147. Watts AG, Sanchez-Watts G, Emanuel JR, Levenson R (1991) Cell-specific expression of mRNAs encoding Na+, K(+)-ATPase alpha- and beta-subunit isoforms within the rat central nervous system. Proc Natl Acad Sci USA 88:7425–7429

    CAS  PubMed  Google Scholar 

  148. Wu PH, Phillis JW (1978) Effects of alpha- and beta-adrenergic blocking agents on the biogenic amine stimulated (Na+-K+) ATPase of rat cerebral cortical synaptosomal membrane. Gen Pharmacol 9:421–424

    CAS  PubMed  Google Scholar 

  149. Wu PH, Phillis JW (1979) Receptor-mediated noradrenaline stimulation of (Na+-K+) ATPase in rat brain cortical homogenates. Gen Pharmacol 10:189–192

    CAS  PubMed  Google Scholar 

  150. Wu DQ, Lee CH, Rhee SG, Simon MI (1992) Activation of phospholipase C by the alpha subunits of the Gq and G11 proteins in transfected Cos-7 cells. J Biol Chem 267:1811–1817

    CAS  PubMed  Google Scholar 

  151. Yoshimura K (1973) Activation of Na-K activated ATPase in rat brain by catecholamine. J Biochem 74:389–391

    CAS  PubMed  Google Scholar 

  152. Youngblood BD, Zhou J, Smagin GN, Ryan DH, Harris RB (1997) Sleep deprivation by the “flower pot” technique and spatial reference memory. Physiol Behav 61:249–256

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

BNM gratefully acknowledges the funding received from Indian agencies viz. Council of Scientific and Industrial Research, Department of Biotechnology, Department of Science and Technology, Indian Council of Medical Research, and University Grant Commission for his research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birendra Nath Mallick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallick, B.N., Singh, S. & Singh, A. Mechanism of noradrenaline-induced stimulation of Na–K ATPase activity in the rat brain: implications on REM sleep deprivation-induced increase in brain excitability. Mol Cell Biochem 336, 3–16 (2010). https://doi.org/10.1007/s11010-009-0260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0260-9

Keywords

Navigation