Skip to main content
Log in

The regulation of AMPK signaling in a natural state of profound metabolic rate depression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In response to energy stress (and elevated AMP), the AMP-activated protein kinase (AMPK) coordinates the restoration of energy homeostasis. We determined that AMPK is activated in a model system (desert snail Otala lactea) during a physiological state of profound metabolic rate depression (estivation) in the absence of a rise in AMP. Kinetic characterization indicated a strong increase in AMPK activity and phosphorylation in estivation, consistent with an increase in P-Ser428 LKB, an established regulator of AMPK. Accordingly, ~2-fold increases in AMPKα1 protein and activity were observed with LKB1 immunoprecipitates from estivating snails. In vitro studies determined that AMPK in crude extracts was activated in the presence of cGMP and deactivated in conditions that permitted protein phosphatase type-2A (PP2A) activity. Furthermore, AMPKα1 protein and activity increased in PKG immunoprecipitates from estivating tissues, suggesting a novel role for PKG in the regulation of AMPK in vivo. We evaluated several downstream targets of AMPK. Acetyl-CoA carboxylase (ACC) activity was strongly inhibited in estivation, consistent with increased P-Ser79 content, and in vitro stimulation of AMPK negated citrate’s ability to stimulate ACC aggregation. Analysis of other targets revealed a strong decrease in PPARγ-coactivator 1α expression in both tissues, which was related to decreased gluconeogenic protein expression in hepatic tissue, but no changes in mitochondrial biogenesis markers in muscle. We concluded that AMPK activation in O. lactea aids in facilitating the suppression of anabolic pathways, without necessarily activating ATP-generating catabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

ACC:

Acetyl-CoA carboxylase

PGC1α:

PPARγ-coactivator 1α

PKG:

Protein kinase G

PP2A:

Protein phosphatase type-2A

G6Pase:

Glucose-6-phosphatase

PEPCK:

Phosphoenolpyruvate carboxykinase

NRF1:

Nuclear respiratory factor 1

mtTFA:

Mitochondrial transcription factor A

References

  1. Hue L, Rider MH (2007) The AMP-activated protein kinase: more than an energy sensor. Essays Biochem 43:121–137

    Article  CAS  PubMed  Google Scholar 

  2. Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100(3):328–341

    Article  CAS  PubMed  Google Scholar 

  3. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP, Alessi DR, Hardie DG (2003) Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2(4):28

    Article  PubMed  Google Scholar 

  4. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280(32):29060–29066

    Article  CAS  PubMed  Google Scholar 

  5. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D (2005) Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2(1):21–33

    Article  CAS  PubMed  Google Scholar 

  6. Xie M, Zhang D, Dyck JR, Li Y, Zhang H, Morishima M, Mann DL, Taffet GE, Baldini A, Khoury DS, Schneider MD (2006) A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci USA 103(46):17378–17383

    Article  CAS  PubMed  Google Scholar 

  7. Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 113(2):274–284

    CAS  PubMed  Google Scholar 

  8. Carling D, Aguan K, Woods A, Verhoeven AJ, Beri RK, Brennan CH, Sidebottom C, Davison MD, Scott J (1994) Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J Biol Chem 269(15):11442–11448

    CAS  PubMed  Google Scholar 

  9. Narbonne P, Roy R (2009) Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival. Nature 457(7226):210–214

    Article  CAS  PubMed  Google Scholar 

  10. Polge C, Thomas M (2007) SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? Trends Plant Sci 12(1):20–28

    Article  CAS  PubMed  Google Scholar 

  11. Horman S, Browne G, Krause U, Patel J, Vertommen D, Bertrand L, Lavoinne A, Hue L, Proud C, Rider M (2002) Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 12(16):1419–1423

    Article  CAS  PubMed  Google Scholar 

  12. Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H, Montminy M (2005) The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437(7062):1109–1111

    Article  CAS  PubMed  Google Scholar 

  13. Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, Van den Berghe G, Carling D, Hue L (2000) Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 10(20):1247–1255

    Article  CAS  PubMed  Google Scholar 

  14. Munday MR (2002) Regulation of mammalian acetyl-CoA carboxylase. Biochem Soc Trans 30(Pt 6):1059–1064

    CAS  PubMed  Google Scholar 

  15. Hardie DG, Pan DA (2002) Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans 30(Pt 6):1064–1070

    CAS  PubMed  Google Scholar 

  16. Horman S, Hussain N, Dilworth SM, Storey KB, Rider MH (2005) Evaluation of the role of AMP-activated protein kinase and its downstream targets in mammalian hibernation. Comp Biochem Physiol B 142:374–382

    Article  PubMed  Google Scholar 

  17. Rider MH, Hussain N, Horman S, Dilworth SM, Storey KB (2006) Stress-induced activation of the AMP-activated protein kinase in the freeze-tolerant frog Rana sylvatica. Cryobiology 53(3):297–309

    Article  CAS  PubMed  Google Scholar 

  18. Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev Camb Philos Soc 74(1):1–40

    Article  CAS  PubMed  Google Scholar 

  19. Gainer H (1972) Effects of experimentally induced diapause on the electrophysiology and protein synthesis patterns of identified molluscan neurons. Brain Res 29:387–402

    Article  Google Scholar 

  20. Cedeno-Leon A (1984) Carbohydrate reserves during aestivation of Pomacea urceus (Muller) Gastropoda, Prosobranchia). Comp Biochem Physiol 78A:553–557

    Article  CAS  Google Scholar 

  21. Livingstone DR, De Zwaan A (1983) Carbohydrate aspects of estivating metabolism in gastropods. In: Wilbur KM (ed) The Mollusca, vol 1. Academic Press, New York

    Google Scholar 

  22. Umezurike GM, Iheanacho EN (1984) The phase relationship of glycogen and free fatty acids in tissues of aestivating giant African snails (Achatina achatina). Comp Biochem Physiol B 78(2):461–466

    Article  CAS  PubMed  Google Scholar 

  23. Churchill TA, Storey KB (1989) Intermediary energy metabolism during dormancy and anoxia in the land snail Otala lactea. Physiol Zool 62(5):1015–1030

    Google Scholar 

  24. Rees BB, Hand SC (1993) Biochemical correlates of estivation tolerance in the mountain snail Oreohelix (Pulmonata: Oreohelicidae). Biol Bull 184:230–242

    Article  Google Scholar 

  25. Ramnanan CJ, Groom AG, Storey KB (2007) Akt and its downstream targets play key roles in mediating dormancy in land snails. Comp Biochem Physiol B 148(3):245–255

    Article  PubMed  Google Scholar 

  26. Heilbronn LK, Gan SK, Turner N, Campbell LV, Chisholm DJ (2007) Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab 92(4):1467–1473

    Article  CAS  PubMed  Google Scholar 

  27. Jarreta D, Orús J, Barrientos A, Miró O, Roig E, Heras M, Moraes CT, Cardellach F, Casademont J (2000) Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc Res 45:860–865

    Article  CAS  PubMed  Google Scholar 

  28. Ramnanan CJ, Allan ME, Groom AG, Storey KB (2009) Regulation of global protein translation and protein degradation in aerobic dormancy. Mol Cell Biochem 323(1):9–20

    Article  CAS  PubMed  Google Scholar 

  29. Brooks SPJ (1992) A simple computer program with statistical tests for the analysis of enzyme kinetics. Biotechniques 13:906–911

    CAS  PubMed  Google Scholar 

  30. Carling D, Zammit VA, Hardie DG (1987) A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 223:217–222

    Article  CAS  PubMed  Google Scholar 

  31. Suter M, Riek U, Tuerk R, Schlattner U, Wallimann T, Neumann D (2006) Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J Biol Chem 281(43):32207–32216

    Article  CAS  PubMed  Google Scholar 

  32. Scott JW, Norman DG, Hawley SA, Kontogiannis L, Hardie DG (2002) Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J Mol Biol 317:309–323

    Article  CAS  PubMed  Google Scholar 

  33. Davies SP, Helps NR, Cohen PT, Hardie DG (1995) 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett 377(3):421–425

    Article  CAS  PubMed  Google Scholar 

  34. Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D (2007) Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 403(1):139–148

    Article  CAS  PubMed  Google Scholar 

  35. Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K (2002) Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem 277(6):3829–3835

    Article  CAS  PubMed  Google Scholar 

  36. Kohjima M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Fujino T, Yada M, Yada R, Harada N, Enjoji M, Takayanagi R, Nakamuta M (2008) SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int J Mol Med 21(4):507–511

    CAS  PubMed  Google Scholar 

  37. Brooks SPJ, Storey KB (1997) Glycolytic controls in estivation and anoxia: a comparison of metabolic arrest in land and marine molluscs. Comp Biochem Physiol A 118:1103–1114

    Article  CAS  Google Scholar 

  38. Barnhart MC (1986) Control of acid-base status in active and dormant land snails, Otala lactea. J Comp Physiol B 156:347–354

    Article  Google Scholar 

  39. Barnhart MC (1986) Respiratory gas tensions and gas exchange in active and dormant land snails, Otala lactea. Physiol Zool 59:733–745

    Google Scholar 

  40. Sung YJ, Walters ET, Ambron RT (2004) A neuronal isoform of protein kinase G couples mitogen-activated protein kinase nuclear import to axotomy-induced long-term hyperexcitability in Aplysia sensory neurons. J Neurosci 24(34):7583–7595

    Article  CAS  PubMed  Google Scholar 

  41. del Pilar Gomez M, Nasi E (2005) Calcium-independent, cGMP-mediated light adaptation in invertebrate ciliary photoreceptors. J Neurosci 25(8):2042–2049

    Article  CAS  PubMed  Google Scholar 

  42. Brooks SPJ, Storey KB (1990) cGMP-stimulated protein kinase phosphorylates pyruvate kinase in an anoxia-tolerant marine mollusc. J Comp Physiol 160B:309–316

    Google Scholar 

  43. Holwerda DA, Druitwagen ECJ, de Bont AM (1981) The regulation of pyruvate kinase and phosphoenolpyruvate carboxykinase activity during anaerobiosis in Mytilus edulis L. Mol Physiol 1:165–171

    CAS  Google Scholar 

  44. Larade K, Storey KB (2004) Accumulation and translation of ferritin heavy chain transcripts following anoxia exposure in a marine invertebrate. J Exp Biol 207(Pt 8):1353–1360

    Article  CAS  PubMed  Google Scholar 

  45. Li J, Hu X, Selvakumar P, Russell RR III, Cushman SW, Holman GD, Young LH (2004) Role of the nitric oxide pathway in AMPK-mediated glucose uptake and GLUT4 translocation in heart muscle. Am J Physiol Endocrinol Metab 287(5):E834–E841

    Article  CAS  PubMed  Google Scholar 

  46. Lira VA, Soltow QA, Long JH, Betters JL, Sellman JE, Criswell DS (2007) Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle. Am J Physiol Endocrinol Metab 293(4):E1062–E1068

    Article  CAS  PubMed  Google Scholar 

  47. Zhang J, Xie Z, Dong Y, Wang S, Liu C, Zou MH (2008) Identification of nitric oxide as an endogenous activator of the AMP-activated protein kinase in vascular endothelial cells. J Biol Chem 283(41):27452–27461

    Article  CAS  PubMed  Google Scholar 

  48. Kudo N, Gillespie JG, Kung L, Witters LA, Schulz R, Clanachan AS, Lopaschuk GD (1996) Characterization of 5′AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochim Biophys Acta 1301(1–2):67–75

    PubMed  Google Scholar 

  49. Samari HR, Moller MT, Holden L, Asmyhr T, Seglen PO (2005) Stimulation of hepatocytic AMP-activated protein kinase by okadaic acid and other autophagy-suppressive toxins. Biochem J 386(Pt 2):237–244

    CAS  PubMed  Google Scholar 

  50. Dyck JR, Kudo N, Barr AJ, Davies SP, Hardie DG, Lopaschuk DG (1999) Phosphorylation control of cardiac acetyl-CoA carboxylase by cAMP-dependent protein kinase and 5′-AMP activated protein kinase. Eur J Biochem 262(1):184–190

    Article  CAS  PubMed  Google Scholar 

  51. Hardie DG, Carling D, Ferrari S, Guy PS, Aitken A (1986) Characterization of the phosphorylation of rat mammary ATP-citrate lysase an acetyl-CoA carboxylase by Ca2+ and calmodulin-dependent multiprotein kinase and Ca2+ and phospholipid-dependent protein kinase. Eur J Biochem 157:553–561

    Article  CAS  PubMed  Google Scholar 

  52. Winder WW, Wilson HA, Hardie DG, Rasmussen BB, Hutber CA, Call GB, Clayton RD, Conley LM, Yoon S, Zhou B (1997) Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J Appl Physiol 82(1):219–225

    Article  CAS  PubMed  Google Scholar 

  53. Ingebritsen TS, Stewart AA, Cohen P (1983) The protein phosphatases involved in cellular regulation. Measurement of type-1 and type-2 protein phosphatases in extracts of mammalian tissues; an assessment of their physiological roles. Eur J Biochem 132(2):297–307

    Article  CAS  PubMed  Google Scholar 

  54. Mabrouk GM, Helmy IM, Thampy G, Wakil SJ (1990) Acute hormonal control of acetyl-CoA carboxylase. The roles of insulin, glucagon, and epinephrine. J Biol Chem 265(11):6330–6338

    CAS  PubMed  Google Scholar 

  55. Palanivel R, Veluthakal R, McDonald P, Kowluru A (2005) Further evidence for the regulation of acetyl-CoA carboxylase activity by a glutamate- and magnesium-activated protein phosphatase in the pancreatic beta cell: defective regulation in the diabetic GK rat islet. Endocrine 26(1):71–77

    Article  CAS  PubMed  Google Scholar 

  56. Foretz M, Ancellin N, Andreelli F, Saintillan Y, Grondin P, Kahn A, Thorens B, Vaulont S, Viollet B (2005) Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54(5):1331–1339

    Article  CAS  PubMed  Google Scholar 

  57. Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF, Shulman GI (2001) Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 281(6):E1340–E1346

    CAS  PubMed  Google Scholar 

  58. Hermes-Lima M, Storey KB (1995) Antioxidant defenses and metabolic depression in a pulmonate land snail. Am J Physiol Regul Integr Comp Physiol 268:R1386–R1393

    CAS  Google Scholar 

  59. Bishop T, Brand MD (2000) Processes contributing to metabolic depression in hepatopancreas cells from the snail Helix aspersa. J Exp Biol 203:3603–3612

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to J. M. Storey for editorial comment on the manuscript. The research was supported by a discovery grant from the Natural Sciences and Engineering Research Council ( NSERC) of Canada (OPG 6793) to K.B.S., by an NSERC postgraduate scholarship to C.J.R., and by an NSERC USRA scholarship to A.G.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Ramnanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramnanan, C.J., McMullen, D.C., Groom, A.G. et al. The regulation of AMPK signaling in a natural state of profound metabolic rate depression. Mol Cell Biochem 335, 91–105 (2010). https://doi.org/10.1007/s11010-009-0246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0246-7

Keywords

Navigation