Skip to main content

Advertisement

Log in

Akt is a direct target for myricetin to inhibit cell transformation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Akt, a serine/threonine kinase, is a critical regulator in many cellular processes including cell growth, proliferation, and apoptosis. In this study, we found that myricetin, a typical flavonol existing in many fruits and vegetables, could directly target Akt to inhibit cell transformation. Binding assay revealed that myricetin bound to Akt directly by competing with ATP. In vitro and ex vivo data confirmed that myricetin inhibited the phosphorylation and kinase activity of Akt. Molecular modeling suggested that myricetin easily docks to the ATP-binding site of Akt with hydrogen bonds. Signaling analysis data further demonstrated that myricetin inhibited Akt-mediated activator protein-1 (AP-1) transactivation, cyclin D1 expression and cell transformation. Overall, our results indicate that Akt is a direct target for myricetin to inhibit cell transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signaling pathway in human malignancy. Cell Signal 14:381–395. doi:10.1016/S0898-6568(01)00271-6

    Article  CAS  PubMed  Google Scholar 

  2. Segrelles C, Lu J, Hammann B, Santos M, Moral M, Cascallana JL, Lara MF, Rho O, Carbajal S, Traag J, Beltran L, Martinez-Cruz AB, Garcia-Escudero R, Lorz C, Ruiz S, Bravo A, Paramio JM, DiGiovanni J (2007) Deregulated activity of Akt in epithelial basal cells induces spontaneous tumors and heightened sensitivity to skin carcinogenesis. Cancer Res 67:10879–10888. doi:10.1158/0008-5472.CAN-07-2564

    Article  CAS  PubMed  Google Scholar 

  3. Nomura M, He Z, Koyama I, Ma WY, Miyamoto K, Dong Z (2003) Involvement of the Akt/mTOR pathway on EGF-induced cell transformation. Mol Carcinog 38:25–32. doi:10.1002/mc.10140

    Article  CAS  PubMed  Google Scholar 

  4. Ma C, Wang J, Gao Y, Gao TW, Chen G, Bower KA, Odetallah M, Ding M, Ke Z, Luo J (2007) The role of glycogen synthase kinase 3beta in the transformation of epidermal cells. Cancer Res 67:7756–7764. doi:10.1158/0008-5472.CAN-06-4665

    Article  CAS  PubMed  Google Scholar 

  5. Huang C, Schmid PC, Ma WY, Schmid HH, Dong Z (1997) Phosphatidylinositol-3 kinase is necessary for 12-O-tetradecanoylphorbol-13-acetate-induced cell transformation and activated protein 1 activation. J Biol Chem 272:4187–4194. doi:10.1074/jbc.272.7.4187

    Article  CAS  PubMed  Google Scholar 

  6. Nomura M, Kaji A, He Z, Ma WY, Miyamoto K, Yang CS, Dong Z (2001) Inhibitory mechanisms of tea polyphenols on the ultraviolet B-activated phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem 276:46624–46631. doi:10.1074/jbc.M107897200

    Article  CAS  PubMed  Google Scholar 

  7. Hanada M, Feng J, Hemmings BA (2004) Structure, regulation and function of PKB/AKT—a major therapeutic target. Biochim Biophys Acta 1697:3–16. doi:10.1016/j.bbapap.2003.11.009

    CAS  PubMed  Google Scholar 

  8. Stabile E, Zhou YF, Saji M, Castagna M, Shou M, Kinnaird TD, Baffour R, Ringel MD, Epstein SE, Fuchs S (2003) Akt controls vascular smooth muscle cell proliferation in vitro and in vivo by delaying G1/S exit. Circ Res 93:1059–1065. doi:10.1161/01.RES.0000105086.31909.1B

    Article  CAS  PubMed  Google Scholar 

  9. Ju X, Katiyar S, Wang C, Liu M, Jiao X, Li S, Zhou J, Turner J, Lisanti MP, Russell RG, Mueller SC, Ojeifo J, Chen WS, Hay N, Pestell RG (2007) Akt1 governs breast cancer progression in vivo. Proc Natl Acad Sci USA 104:7438–7443. doi:10.1073/pnas.0605874104

    Article  CAS  PubMed  Google Scholar 

  10. Massague J (2004) G1 cell-cycle control and cancer. Nature 432:298–306. doi:10.1038/nature03094

    Article  CAS  PubMed  Google Scholar 

  11. Lin J, Zhang SM, Wu K, Willett WC, Fuchs CS, Giovannucci E (2006) Flavonoid intake and colorectal cancer risk in men and women. Am J Epidemiol 164:644–651. doi:10.1093/aje/kwj296

    Article  PubMed  Google Scholar 

  12. Ong KC, Khoo HE (1997) Biological effects of myricetin. Gen Pharmacol 29:121–126. doi:10.1016/S0306-3623(96)00421-1

    CAS  PubMed  Google Scholar 

  13. Mukhtar H, Das M, Khan WA, Wang ZY, Bik DP, Bickers DR (1988) Exceptional activity of tannic acid among naturally occurring plant phenols in protecting against 7, 12-dimethylbenz(a)anthracene-, benzo(a)pyrene-, 3-methylcholanthrene-, and N-methyl-N-nitrosourea-induced skin tumorigenesis in mice. Cancer Res 48:2361–2365

    CAS  PubMed  Google Scholar 

  14. Lee KW, Kang NJ, Rogozin EA, Kim HG, Cho YY, Bode AM, Lee HJ, Surh YJ, Bowden GT, Dong Z (2007) Myricetin is a novel natural inhibitor of neoplastic cell transformation and MEK1. Carcinogenesis 28:1918–1927. doi:10.1093/carcin/bgm110

    Article  CAS  PubMed  Google Scholar 

  15. Jung SK, Lee KW, Byun S, Kang NJ, Lim SH, Heo YS, Bode AM, Bowden GT, Lee HJ, Dong Z (2008) Myricetin suppresses UVB-induced skin cancer by targeting Fyn. Cancer Res 68:6021–6029. doi:10.1158/0008-5472.CAN-08-0899

    Article  CAS  PubMed  Google Scholar 

  16. Kim JE, Kwon JY, Lee DE, Kang NJ, Heo YS, Lee KW, Lee HJ (2009) MKK4 is a novel target for the inhibition of tumor necrosis factor-alpha-induced vascular endothelial growth factor expression by myricetin. Biochem Pharmacol 77:412–421. doi:10.1016/j.bcp.2008.10.027

    Article  CAS  PubMed  Google Scholar 

  17. Kumamoto T, Fujii M, Hou DX (2009) Myricetin directly targets JAK1 to inhibit cell transformation. Cancer Lett 275:17–26. doi:10.1016/j.canlet.2008.09.027

    Article  CAS  PubMed  Google Scholar 

  18. Goto J, Kataoka R, Muta H, Hirayama N (2008) ASEDock-docking based on alpha spheres and excluded volumes. J Chem Inf Model 48:583–590. doi:10.1021/ci700352q

    Article  CAS  PubMed  Google Scholar 

  19. Hou DX, Kai K, Li JJ, Lin S, Terahara N, Wakamatsu M, Fujii M, Young MR, Colburn N (2004) Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and molecular mechanisms. Carcinogenesis 25:29–36. doi:10.1093/carcin/bgg184

    Article  CAS  PubMed  Google Scholar 

  20. Tanigawa S, Fujii M, Hou DX (2007) Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic Biol Med 42:1690–1703. doi:10.1016/j.freeradbiomed.2007.02.017

    Article  CAS  PubMed  Google Scholar 

  21. Tanigawa S, Fujii M, Hou DX (2008) Stabilization of p53 is involved in quercetin-induced cell cycle arrest and apoptosis in HepG2 cells. Biosci Biotechnol Biochem 72:797–804. doi:10.1271/bbb.70680

    Article  CAS  PubMed  Google Scholar 

  22. Kumar CC, Madison V (2005) AKT crystal structure and AKT-specific inhibitors. Oncogene 24:7493–7501. doi:10.1038/sj.onc.1209087

    Article  CAS  PubMed  Google Scholar 

  23. Eto I (1998) Promotion-sensitive epidermal and mammary epithelial cells maintained in suspension over agarose. Cell Prolif 31:71–92. doi:10.1046/j.1365-2184.1998.00112.x

    Article  CAS  PubMed  Google Scholar 

  24. Eto I (2000) Molecular cloning and sequence analysis of the promoter region of mouse cyclin D1 gene: implication in phorbol ester-induced tumour promotion. Cell Prolif 33:167–187. doi:10.1046/j.1365-2184.2000.00176.x

    Article  CAS  PubMed  Google Scholar 

  25. Hsu TC, Young MR, Cmarik J, Colburn NH (2000) Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radic Biol Med 28:1338–1348. doi:10.1016/S0891-5849(00)00220-3

    Article  CAS  PubMed  Google Scholar 

  26. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24:7455–7464. doi:10.1038/sj.onc.1209085

    Article  CAS  PubMed  Google Scholar 

  27. Lee KM, Kang NJ, Han JH, Lee KW, Lee HJ (2007) Myricetin down-regulates phorbol ester-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking activation of nuclear factor kappa B. J Agric Food Chem 55:9678–9684. doi:10.1021/jf0717945

    Article  CAS  PubMed  Google Scholar 

  28. Parcellier A, Tintignac LA, Zhuravleva E, Hemmings BA (2008) PKB and the mitochondria: AKTing on apoptosis. Cell Signal 20:21–30. doi:10.1016/j.cellsig.2007.07.010

    Article  CAS  PubMed  Google Scholar 

  29. Kuo PL (2005) Myricetin inhibits the induction of anti-Fas IgM-, tumor necrosis factor-alpha- and interleukin-1beta-mediated apoptosis by Fas pathway inhibition in human osteoblastic cell line MG-63. Life Sci 77:2964–2976. doi:10.1016/j.lfs.2005.05.026

    Article  CAS  PubMed  Google Scholar 

  30. Wang IK, Lin-Shiau SY, Lin JK (1999) Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer 35:1517–1525. doi:10.1016/S0959-8049(99)00168-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the fund of Frontier Science Research Center of Kagoshima University granted to D.-X. Hou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Xing Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumamoto, T., Fujii, M. & Hou, DX. Akt is a direct target for myricetin to inhibit cell transformation. Mol Cell Biochem 332, 33–41 (2009). https://doi.org/10.1007/s11010-009-0171-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0171-9

Keywords

Navigation