Skip to main content

Advertisement

Log in

Developmental function of Nm23/awd: a mediator of endocytosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The metastasis suppressor gene Nm23 is highly conserved from yeast to human, implicating a critical developmental function. Studies in cultured mammalian cells have identified several potential functions, but many have not been directly verified in vivo. Here, we summarize the studies on the Drosophila homolog of the Nm23 gene, named a bnormal w ing d iscs (awd), which shares 78% amino acid identity with the human Nm23-H1 and H2 isoforms. These studies confirmed that awd gene encodes a nucleoside diphosphate kinase, and provided strong evidence of a role for awd in regulating cell differentiation and motility via regulation of growth factor receptor signaling. The latter function is mainly mediated by control of endocytosis. This review provides a historical account of the discovery and subsequent analyses of the awd gene. We will also discuss the possible molecular function of the Awd protein that underlies the endocytic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Steeg PS, Bevilacqua G, Kopper L, Thorgeirsson UP, Talmadge JE, Liotta LA, Sobel ME (1988) Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 80:200–204. doi:10.1093/jnci/80.3.200

    Article  PubMed  CAS  Google Scholar 

  2. Ouatas T, Salerno M, Palmieri D, Steeg PS (2003) Basic and translational advances in cancer metastasis: Nm23. J Bioenerg Biomembr 35:73–79. doi:10.1023/A:1023497924277

    Article  PubMed  CAS  Google Scholar 

  3. Heimann R, Hellman S (2000) Individual characterisation of the metastatic capacity of human breast carcinoma. Eur J Cancer 36:1631–1639. doi:10.1016/S0959-8049(00)00151-9

    Article  PubMed  CAS  Google Scholar 

  4. Sirotkovic-Skerlev M, Krizanac S, Kapitanovic S, Husnjak K, Unusic J, Pavelic K (2005) Expression of c-myc, erbB-2, p53 and nm23-H1 gene product in benign and malignant breast lesions: coexpression and correlation with clinicopathologic parameters. Exp Mol Pathol 79:42–50. doi:10.1016/j.yexmp.2005.02.004

    Article  PubMed  CAS  Google Scholar 

  5. Galani E, Sgouros J, Petropoulou C, Janinis J, Aravantinos G, Dionysiou-Asteriou D, Skarlos D, Gonos E (2002) Correlation of MDR-1, nm23-H1 and H Sema E gene expression with histopathological findings and clinical outcome in ovarian and breast cancer patients. Anticancer Res 22:2275–2280

    PubMed  CAS  Google Scholar 

  6. Anwar S, Frayling IM, Scott NA, Carlson GL (2004) Systematic review of genetic influences on the prognosis of colorectal cancer. Br J Surg 91:1275–1291. doi:10.1002/bjs.4737

    Article  PubMed  CAS  Google Scholar 

  7. Ouellet V, Le Page C, Guyot MC, Lussier C, Tonin PN, Provencher DM, Mes-Masson AM (2006) SET complex in serous epithelial ovarian cancer. Int J Cancer 119:2119–2126. doi:10.1002/ijc.22054

    Article  PubMed  CAS  Google Scholar 

  8. An HJ, Kim DS, Park YK, Kim SK, Choi YP, Kang S, Ding B, Cho NH (2006) Comparative proteomics of ovarian epithelial tumors. J Proteome Res 5:1082–1090. doi:10.1021/pr050461p

    Article  PubMed  CAS  Google Scholar 

  9. Postel EH, Berberich SJ, Rooney JW, Kaetzel DM (2000) Human NM23/nucleoside diphosphate kinase regulates gene expression through DNA binding to nuclease-hypersensitive transcriptional elements. J Bioenerg Biomembr 32:277–284. doi:10.1023/A:1005541114029

    Article  PubMed  CAS  Google Scholar 

  10. Ma D, Xing Z, Liu B, Pedigo NG, Zimmer SG, Bai Z, Postel EH, Kaetzel DM (2002) NM23-H1 and NM23-H2 repress transcriptional activities of nuclease-hypersensitive elements in the platelet-derived growth factor-A promoter. J Biol Chem 277:1560–1567. doi:10.1074/jbc.M108359200

    Article  PubMed  CAS  Google Scholar 

  11. Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J (2003) Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112:659–672. doi:10.1016/S0092-8674(03)00150-8

    Article  PubMed  CAS  Google Scholar 

  12. Engel M, Veron M, Theisinger B, Lacombe ML, Seib T, Dooley S, Welter C (1995) A novel serine/threonine-specific protein phosphotransferase activity of Nm23/nucleoside-diphosphate kinase. Eur J Biochem 234:200–207. doi:10.1111/j.1432-1033.1995.200_c.x

    Article  PubMed  CAS  Google Scholar 

  13. Inoue H, Takahashi M, Oomori A, Sekiguchi M, Yoshioka T (1996) A novel function for nucleoside diphosphate kinase in Drosophila. Biochem Biophys Res Commun 218:887–892. doi:10.1006/bbrc.1996.0158

    Article  PubMed  CAS  Google Scholar 

  14. Wagner PD, Steeg PS, Vu ND (1997) Two-component kinase-like activity of nm23 correlates with its motility-suppressing activity. Proc Natl Acad Sci USA 94:9000–9005. doi:10.1073/pnas.94.17.9000

    Article  PubMed  CAS  Google Scholar 

  15. Besant PG, Tan E, Attwood PV (2003) Mammalian protein histidine kinases. Int J Biochem Cell Biol 35:297–309. doi:10.1016/S1357-2725(02)00257-1

    Article  PubMed  CAS  Google Scholar 

  16. Steeg PS, Palmieri D, Ouatas T, Salerno M (2003) Histidine kinases and histidine phosphorylated proteins in mammalian cell biology, signal transduction and cancer. Cancer Lett 190:1–12. doi:10.1016/S0304-3835(02)00499-8

    Article  PubMed  CAS  Google Scholar 

  17. Biggs J, Hersperger E, Steeg PS, Liotta LA, Shearn A (1990) A Drosophila gene that is homologous to a mammalian gene associated with tumor metastasis codes for a nucleoside diphosphate kinase. Cell 63:933–940. doi:10.1016/0092-8674(90)90496-2

    Article  PubMed  CAS  Google Scholar 

  18. Timmons L, Shearn A (1996) Germline transformation using a prune cDNA rescues prune/killer of prune lethality and the prune eye color phenotype in Drosophila. Genetics 144:1589–1600

    PubMed  CAS  Google Scholar 

  19. Sturtevant AH (1956) A highly specific complementary lethal system in Drosophila melanogaster. Genetics 41:118–123

    PubMed  CAS  Google Scholar 

  20. Dearolf CR, Hersperger E, Shearn A (1988) Developmental consequences of awdb3, a cell-autonomous lethal mutation of Drosophila induced by hybrid dysgenesis. Dev Biol 129:159–168. doi:10.1016/0012-1606(88)90170-4

    Article  PubMed  CAS  Google Scholar 

  21. Dearolf CR, Tripoulas N, Biggs J, Shearn A (1988) Molecular consequences of awdb3, a cell-autonomous lethal mutation of Drosophila induced by hybrid dysgenesis. Dev Biol 129:169–178. doi:10.1016/0012-1606(88)90171-6

    Article  PubMed  CAS  Google Scholar 

  22. Santos AC, Lehmann R (2004) Germ cell specification and migration in Drosophila and beyond. Curr Biol 14:R578–R589. doi:10.1016/j.cub.2004.07.018

    Article  PubMed  CAS  Google Scholar 

  23. Rosengard AM, Krutzsch HC, Shearn A, Biggs JR, Barker E, Margulies IM, King CR, Liotta LA, Steeg PS (1989) Reduced Nm23/Awd protein in tumour metastasis and aberrant Drosophila development. Nature 342:177–180. doi:10.1038/342177a0

    Article  PubMed  CAS  Google Scholar 

  24. Nickerson JA, Wells WW (1984) The microtubule-associated nucleoside diphosphate kinase. J Biol Chem 259:11297–11304

    PubMed  CAS  Google Scholar 

  25. Wallet V, Mutzel R, Troll H, Barzu O, Wurster B, Veron M, Lacombe ML (1990) Dictyostelium nucleoside diphosphate kinase highly homologous to Nm23 and Awd proteins involved in mammalian tumor metastasis and Drosophila development. J Natl Cancer Inst 82:1199–1202. doi:10.1093/jnci/82.14.1199

    Article  PubMed  CAS  Google Scholar 

  26. Lascu I, Chaffotte A, Limbourg-Bouchon B, Veron M (1992) A Pro/Ser substitution in nucleoside diphosphate kinase of Drosophila melanogaster (mutation killer of prune) affects stability but not catalytic efficiency of the enzyme. J Biol Chem 267:12775–12781

    PubMed  CAS  Google Scholar 

  27. Timmons L, Xu J, Hersperger G, Deng XF, Shearn A (1995) Point mutations in awdKpn which revert the prune/Killer of prune lethal interaction affect conserved residues that are involved in nucleoside diphosphate kinase substrate binding and catalysis. J Biol Chem 270:23021–23030. doi:10.1074/jbc.270.39.23021

    Article  PubMed  CAS  Google Scholar 

  28. Xu J, Liu LZ, Deng XF, Timmons L, Hersperger E, Steeg PS, Veron M, Shearn A (1996) The enzymatic activity of Drosophila AWD/NDP kinase is necessary but not sufficient for its biological function. Dev Biol 177:544–557. doi:10.1006/dbio.1996.0184

    Article  CAS  Google Scholar 

  29. Lifschytz E, Falk R (1969) A genetic analysis of the killer-prune (K-pn) locus of Drosophila melanogaster. Genetics 62:353–358

    PubMed  CAS  Google Scholar 

  30. Biggs J, Tripoulas N, Hersperger E, Dearolf C, Shearn A (1988) Analysis of the lethal interaction between the prune and Killer of prune mutations of Drosophila. Genes Dev 2:1333–1343. doi:10.1101/gad.2.10.1333

    Article  PubMed  CAS  Google Scholar 

  31. Hama H, Almaula N, Lerner CG, Inouye S, Inouye M (1991) Nucleoside diphosphate kinase from Escherichia coli; its overproduction and sequence comparison with eukaryotic enzymes. Gene 105:31–36. doi:10.1016/0378-1119(91)90510-I

    Article  PubMed  CAS  Google Scholar 

  32. Freije JM, Blay P, MacDonald NJ, Manrow RE, Steeg PS (1997) Site-directed mutation of Nm23-H1. Mutations lacking motility suppressive capacity upon transfection are deficient in histidine-dependent protein phosphotransferase pathways in vitro. J Biol Chem 272:5525–5532. doi:10.1074/jbc.272.9.5525

    Article  PubMed  CAS  Google Scholar 

  33. MacDonald NJ, Freije JM, Stracke ML, Manrow RE, Steeg PS (1996) Site-directed mutagenesis of nm23-H1. Mutation of proline 96 or serine 120 abrogates its motility inhibitory activity upon transfection into human breast carcinoma cells. J Biol Chem 271:25107–25116. doi:10.1074/jbc.271.41.25107

    Article  PubMed  CAS  Google Scholar 

  34. Teng DH, Bender LB, Engele CM, Tsubota S, Venkatesh T (1991) Isolation and characterization of the prune locus of Drosophila melanogaster. Genetics 128:373–380

    PubMed  CAS  Google Scholar 

  35. Teng DH, Engele CM, Venkatesh TR (1991) A product of the prune locus of Drosophila is similar to mammalian GTPase-activating protein. Nature 353:437–440. doi:10.1038/353437a0

    Article  PubMed  CAS  Google Scholar 

  36. Aravind L, Koonin EV (1998) A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial RecJ exonuclease. Trends Biochem Sci 23:17–19. doi:10.1016/S0968-0004(97)01162-6

    Article  PubMed  CAS  Google Scholar 

  37. Reymond A, Volorio S, Merla G, Al-Maghtheh M, Zuffardi O, Bulfone A, Ballabio A, Zollo M (1999) Evidence for interaction between human PRUNE and nm23-H1 NDPKinase. Oncogene 18:7244–7252. doi:10.1038/sj.onc.1203140

    Article  PubMed  CAS  Google Scholar 

  38. D’Angelo A, Garzia L, Andre A, Carotenuto P, Aglio V, Guardiola O, Arrigoni G, Cossu A, Palmieri G, Aravind L, Zollo M (2004) Prune cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis. Cancer Cell 5:137–149. doi:10.1016/S1535-6108(04)00021-2

    Article  PubMed  Google Scholar 

  39. Fan CL, Hall LM, Skrinska AJ, Brown GM (1976) Correlation of guanosine triphosphate cyclohydrolase activity and the synthesis of pterins in Drosophila melanogaster. Biochem Genet 14:271–280. doi:10.1007/BF00484766

    Article  PubMed  CAS  Google Scholar 

  40. Evans BA, Howells AJ (1978) Control of drosopterin synthesis in Drosophila melanogaster: mutants showing an altered pattern of GTP cyclohydrolase activity during development. Biochem Genet 16:13–26. doi:10.1007/BF00484381

    Article  PubMed  CAS  Google Scholar 

  41. Timmons L, Shearn A (1997) prune/Killer of prune: a conditional dominant lethal interaction in Drosophila. Adv Genet 35:207–252. doi:10.1016/S0065-2660(08)60451-4

    Article  PubMed  CAS  Google Scholar 

  42. Provost E, Shearn A (2006) The suppressor of Killer of prune, a unique glutathione S-transferase. J Bioenerg Biomembr 38:189–195. doi:10.1007/s10863-006-9034-1

    Article  PubMed  CAS  Google Scholar 

  43. Provost E, Hersperger G, Timmons L, Ho WQ, Hersperger E, Alcazar R, Shearn A (2006) Loss-of-function mutations in a glutathione S-transferase suppress the prune-Killer of prune lethal interaction. Genetics 172:207–219. doi:10.1534/genetics.105.044669

    Article  PubMed  CAS  Google Scholar 

  44. Pickett CB, Lu AY (1989) Glutathione S-transferases: gene structure, regulation, and biological function. Annu Rev Biochem 58:743–764. doi:10.1146/annurev.bi.58.070189.003523

    Article  PubMed  CAS  Google Scholar 

  45. Kosaka T, Ikeda K (1983) Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J Neurobiol 14:207–225. doi:10.1002/neu.480140305

    Article  PubMed  CAS  Google Scholar 

  46. Krishnan KS, Rikhy R, Rao S, Shivalkar M, Mosko M, Narayanan R, Etter P, Estes PS, Ramaswami M (2001) Nucleoside diphosphate kinase, a source of GTP, is required for dynamin-dependent synaptic vesicle recycling. Neuron 30:197–210. doi:10.1016/S0896-6273(01)00273-2

    Article  PubMed  CAS  Google Scholar 

  47. Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, Oldfield EH (2003) von Hippel-Lindau disease. Lancet 361:2059–2067. doi:10.1016/S0140-6736(03)13643-4

    Article  PubMed  CAS  Google Scholar 

  48. Adryan B, Decker HJ, Papas TS, Hsu T (2000) Tracheal development and the von Hippel-Lindau tumor suppressor homolog in Drosophila. Oncogene 19:2803–2811. doi:10.1038/sj.onc.1203611

    Article  PubMed  CAS  Google Scholar 

  49. Dammai V, Adryan B, Lavenburg KR, Hsu T (2003) Drosophila awd, the homolog of human nm23, regulates FGF receptor levels and functions synergistically with shi/dynamin during tracheal development. Genes Dev 17:2812–2824. doi:10.1101/gad.1096903

    Article  PubMed  CAS  Google Scholar 

  50. Glazer L, Shilo BZ (1991) The Drosophila FGF-R homolog is expressed in the embryonic tracheal system and appears to be required for directed tracheal cell extension. Genes Dev 5:697–705. doi:10.1101/gad.5.4.697

    Article  PubMed  CAS  Google Scholar 

  51. Sutherland D, Samakovlis C, Krasnow MA (1996) Branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87:1091–1101. doi:10.1016/S0092-8674(00)81803-6

    Article  PubMed  CAS  Google Scholar 

  52. Hsouna A, Lawal HO, Izevbaye I, Hsu T, O’Donnell JM (2007) Drosophila dopamine synthesis pathway genes regulate tracheal morphogenesis. Dev Biol 308:30–43. doi:10.1016/j.ydbio.2007.04.047

    Article  PubMed  CAS  Google Scholar 

  53. Krishnakumar S, Burton D, Rasco J, Chen X, O’Donnell J (2000) Functional interactions between GTP cyclohydrolase I and tyrosine hydroxylase in Drosophila. J Neurogenet 14:1–23. doi:10.3109/01677060009083474

    Article  PubMed  CAS  Google Scholar 

  54. Montell DJ (2003) Border-cell migration: the race is on. Nat Rev Mol Cell Biol 4:13–24. doi:10.1038/nrm1006

    Article  PubMed  CAS  Google Scholar 

  55. Rørth P (2002) Initiating and guiding migration: lessons from border cells. Trends Cell Biol 12:325–331

    Article  PubMed  Google Scholar 

  56. Duchek P, Somogyi K, Jekely G, Beccari S, Rorth P (2001) Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107:17–26. doi:10.1016/S0092-8674(01)00502-5

    Article  PubMed  CAS  Google Scholar 

  57. McDonald JA, Pinheiro EM, Montell DJ (2003) PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development 130:3469–3478. doi:10.1242/dev.00574

    Article  PubMed  CAS  Google Scholar 

  58. Nallamothu G, Woolworth JA, Dammai V, Hsu T (2008) Awd, the homolog of metastasis suppressor gene Nm23, regulates Drosophila epithelial cell invasion. Mol Cell Biol 28:1964–1973. doi:10.1128/MCB.01743-07

    Article  PubMed  CAS  Google Scholar 

  59. Deitcher D (2001) Shibire’s enhancer is cancer’s suppressor. Trends Neurosci 24:625–626. doi:10.1016/S0166-2236(00)01927-5

    Article  PubMed  CAS  Google Scholar 

  60. Wu L, Niemeyer B, Colley N, Socolich M, Zuker CS (1995) Regulation of PLC-mediated signalling in vivo by CDP-diacylglycerol synthase. Nature 373:216–222. doi:10.1038/373216a0

    Article  PubMed  CAS  Google Scholar 

  61. Roth MG (2004) Phosphoinositides in constitutive membrane traffic. Physiol Rev 84:699–730. doi:10.1152/physrev.00033.2003

    Article  PubMed  CAS  Google Scholar 

  62. Haucke V (2005) Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem Soc Trans 33:1285–1289. doi:10.1042/BST20051285

    Article  PubMed  CAS  Google Scholar 

  63. Lee A, Frank DW, Marks MS, Lemmon MA (1999) Dominant-negative inhibition of receptor-mediated endocytosis by a dynamin-1 mutant with a defective pleckstrin homology domain. Curr Biol 9:261–264. doi:10.1016/S0960-9822(99)80115-8

    Article  PubMed  Google Scholar 

  64. Jost M, Simpson F, Kavran JM, Lemmon MA, Schmid SL (1998) Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr Biol 8:1399–1402. doi:10.1016/S0960-9822(98)00022-0

    Article  PubMed  CAS  Google Scholar 

  65. Palacios F, Schweitzer JK, Boshans RL, D’Souza-Schorey C (2002) ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol 4:929–936. doi:10.1038/ncb881

    Article  PubMed  CAS  Google Scholar 

  66. Otsuki Y, Tanaka M, Yoshii S, Kawazoe N, Nakaya K, Sugimura H (2001) Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc Natl Acad Sci USA 98:4385–4390. doi:10.1073/pnas.071411598

    Article  PubMed  CAS  Google Scholar 

  67. Iwashita S, Fujii M, Mukai H, Ono Y, Miyamoto M (2004) Lbc proto-oncogene product binds to and could be negatively regulated by metastasis suppressor nm23-H2. Biochem Biophys Res Commun 320:1063–1068. doi:10.1016/j.bbrc.2004.06.067

    Article  PubMed  CAS  Google Scholar 

  68. Tseng YH, Vicent D, Zhu J, Niu Y, Adeyinka A, Moyers JS, Watson PH, Kahn CR (2001) Regulation of growth and tumorigenicity of breast cancer cells by the low molecular weight GTPase Rad and nm23. Cancer Res 61:2071–2079

    PubMed  CAS  Google Scholar 

  69. Hsu T, Adereth Y, Kose N, Dammai V (2006) Endocytic function of von Hippel-Lindau tumor suppressor protein regulates surface localization of fibroblast growth factor receptor 1 and cell motility. J Biol Chem 281:12069–12080. doi:10.1074/jbc.M511621200

    Article  PubMed  CAS  Google Scholar 

  70. Frew IJ, Krek W (2007) Multitasking by pVHL in tumour suppression. Curr Opin Cell Biol 19:685–690. doi:10.1016/j.ceb.2007.10.001

    Article  PubMed  CAS  Google Scholar 

  71. Barraud P, Amrein L, Dobremez E, Dabernat S, Masse K, Larou M, Daniel JY, Landry M (2002) Differential expression of nm23 genes in adult mouse dorsal root ganglia. J Comp Neurol 444:306–323. doi:10.1002/cne.10150

    Article  PubMed  CAS  Google Scholar 

  72. Eggenschwiler JT, Anderson KV (2007) Cilia and developmental signaling. Annu Rev Cell Dev Biol 23:345–373. doi:10.1146/annurev.cellbio.23.090506.123249

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by grants from the National Institutes of Health to T.H. (RO1GM57843) and V.D. (RO1CA128002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien Hsu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nallamothu, G., Dammai, V. & Hsu, T. Developmental function of Nm23/awd: a mediator of endocytosis. Mol Cell Biochem 329, 35–44 (2009). https://doi.org/10.1007/s11010-009-0112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0112-7

Keywords

Navigation