Skip to main content
Log in

Effect of protocatechuic acid from Alpinia oxyphylla on proliferation of human adipose tissue-derived stromal cells in vitro

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The effect of protocatechuic acid (PCA) from Alpinia oxyphylla and catapol from Rehmannia on the proliferation capacity of human adipose tissue-derived stromal cells (hADSCs) was investigated in vitro. Cell counts showed that treatment of hADSCs with PCA for 48 h increased the cell number in a dose-dependent manner, while no obvious effect of catapol on the proliferation of hADSCs was observed. In addition, the cell number of hADSCs treated by 1.5 mM PCA increased in a time-dependent manner. The flow cytometric analysis of DNA content demonstrated the cell cycle progress from the G0/G1 phase to the S phase. Western blot analysis revealed the elevated expression of cyclin D1 in hADSCs induced by PCA treatment. Cyclin D1-siRNA transfection significantly inhibit the promotion of cell proliferation by PCA. Furthermore, the flow cytometric analysis of the cell surface antigens and the multidifferential potential tests of PCA-treated hADSCs showed that the cells retained their functional characteristics of multipotential mesenchymal progenitors. It is concluded that PCA can effectively up-regulate the proliferation of hADSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. De Ugarte DA, Morizono K, Elbarbary A et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109. doi:10.1159/000071150

    Article  PubMed  Google Scholar 

  2. Hedrick M, Daniels E (2003) The use of adult stem cells in regenerative medicine. Clin Plast Surg 30:499–505. doi:10.1016/S0094-1298(03)00068-3

    Article  PubMed  Google Scholar 

  3. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228. doi:10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

  4. Dicker A, Le Blanc K, Astrom G et al (2005) Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 308:283–290. doi:10.1016/j.yexcr.2005.04.029

    Article  CAS  PubMed  Google Scholar 

  5. Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295. doi:10.1091/mbc.E02-02-0105

    Article  CAS  PubMed  Google Scholar 

  6. Weissberg PL, Qasim A (2005) Stem cell therapy for myocardial repair. Heart 91:696–702. doi:10.1136/hrt.2004.038224

    Article  PubMed  Google Scholar 

  7. Einstein O, Ben-Menachem-Tzidon O, Mizrachi-Kol R et al (2006) Survival of neural precursor cells in growth factor-poor environment: implications for transplantation in chronic disease. Glia 53:449–455. doi:10.1002/glia.20305

    Article  PubMed  Google Scholar 

  8. Geng YJ (2003) Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure. Ann N Y Acad Sci 1010:687–697. doi:10.1196/annals.1299.126

    Article  CAS  PubMed  Google Scholar 

  9. Bartlett PF, Richards LR, Kilpatrick TJ et al (1995) Factors regulating the differentiation of neural precursors in the forebrain. Ciba Found Symp 193:85–99; discussion 117–126

    CAS  PubMed  Google Scholar 

  10. Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10:3129–3140. doi:10.1101/gad.10.24.3129

    Article  CAS  PubMed  Google Scholar 

  11. Weiss S, Reynolds BA, Vescovi AL et al (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19:387–393. doi:10.1016/S0166-2236(96)10035-7

    Article  CAS  PubMed  Google Scholar 

  12. Dickinson ME, Krumlauf R, McMahon AP (1994) Evidence for a mitogenic effect of Wnt-1 in the developing mammalian central nervous system. Development 120:1453–1471

    CAS  PubMed  Google Scholar 

  13. Neth P, Ciccarella M, Egea V et al (2006) Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells 24:1892–1903. doi:10.1634/stemcells.2005-0503

    Article  CAS  PubMed  Google Scholar 

  14. Antonopoulos J, Pappas IS, Parnavelas JG (1997) Activation of the GABAA receptor inhibits the proliferative effects of bFGF in cortical progenitor cells. Eur J Neurosci 9:291–298. doi:10.1111/j.1460-9568.1997.tb01399.x

    Article  CAS  PubMed  Google Scholar 

  15. LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298. doi:10.1016/0896-6273(95)90008-X

    Article  CAS  PubMed  Google Scholar 

  16. Chen DF, Du SH, Li YW, Zhang J, Li H (2002) Effect of tortoise shell on expression of nestin following focal cerebral ischemia reperfusion. Chin J Anat 25:315–319

    Google Scholar 

  17. Cheng L, Zhu PC, Si YC (2003) Effects of total saponin from Panax notoginseng on the expressions of nestin and bFGF in the subependyma of the forebrain lateral ventricle in adult rats with cortical deva scularization. J Beijing Univ TCM 26:18–20

    CAS  Google Scholar 

  18. Guan S, Bao YM, Jiang B, An LJ (2006) Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death. Eur J Pharmacol 538:73–79. doi:10.1016/j.ejphar.2006.03.065

    Article  CAS  Google Scholar 

  19. Tseng TH, Hsu JD, Lo MH et al (1998) Inhibitory effect of Hibiscus protocatechuic acid on tumor promotion in mouse skin. Cancer Lett 126:199–207. doi:10.1016/S0304-3835(98)00010-X

    Article  CAS  PubMed  Google Scholar 

  20. Tseng TH, Wang CJ, Kao ES, Chu HY (1996) Hibiscus protocatechuic acid protects against oxidative damage induced by tert-butylhydroperoxide in rat primary hepatocytes. Chem Biol Interact 101:137–148. doi:10.1016/0009-2797(96)03721-0

    Article  CAS  PubMed  Google Scholar 

  21. Tseng TH, Kao TW, Chu CY et al (2000) Induction of apoptosis by hibiscus protocatechuic acid in human leukemia cells via reduction of retinoblastoma (RB) phosphorylation and Bcl-2 expression. Biochem Pharmacol 60:307–315. doi:10.1016/S0006-2952(00)00322-1

    Article  CAS  PubMed  Google Scholar 

  22. Yip EC, Chan AS, Pang H, Tam YK, Wong YH (2006) Protocatechuic acid induces cell death in HepG2 hepatocellular carcinoma cells through a c-Jun N-terminal kinase-dependent mechanism. Cell Biol Toxicol 22:293–302. doi:10.1007/s10565-006-0082-4

    Article  CAS  PubMed  Google Scholar 

  23. Jiang B, Liu JH, Bao YM, An LJ (2004) Catalpol inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade. Toxicon 43:53–59. doi:10.1016/j.toxicon.2003.10.017

    Article  CAS  PubMed  Google Scholar 

  24. An LJ, Guan S, Shi GF et al (2006) Protocatechuic acid from Alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 cells. Food Chem Toxicol 44:436–443. doi:10.1016/j.fct.2005.08.017

    Article  CAS  PubMed  Google Scholar 

  25. Digirolamo CM, Stokes D, Colter D et al (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275–281. doi:10.1046/j.1365-2141.1999.01715.x

    Article  CAS  PubMed  Google Scholar 

  26. Lennon DP, Edmison JM, Caplan AI (2001) Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 187:345–355. doi:10.1002/jcp.1081

    Article  CAS  PubMed  Google Scholar 

  27. Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291. doi:10.1146/annurev.cellbio.13.1.261

    Article  CAS  PubMed  Google Scholar 

  28. Beijersbergen RL, Carlee L, Kerkhoven RM, Bernards R (1995) Regulation of the retinoblastoma protein-related p107 by G1 cyclin complexes. Genes Dev 9:1340–1353. doi:10.1101/gad.9.11.1340

    Article  CAS  PubMed  Google Scholar 

  29. Muntean AG, Pang L, Poncz M et al (2007) Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization. Blood 109:5199–5207. doi:10.1182/blood-2006-11-059378

    Article  CAS  PubMed  Google Scholar 

  30. Tashiro E, Tsuchiya A, Imoto M (2007) Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Sci 98:629–635. doi:10.1111/j.1349-7006.2007.00449.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (30670525 and 30700181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Qing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Liu, TQ., Zhu, YX. et al. Effect of protocatechuic acid from Alpinia oxyphylla on proliferation of human adipose tissue-derived stromal cells in vitro. Mol Cell Biochem 330, 47–53 (2009). https://doi.org/10.1007/s11010-009-0099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0099-0

Keywords

Navigation