Skip to main content

Advertisement

Log in

Proteome alteration of U251 human astrocytoma cell after inhibiting retinoic acid synthesis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Retinoic acid (Ra) is crucial for the patterning and neuronal differentiation in the central nervous system (CNS). Ra deficiency in animals disrupts the motor activities and memory abilities. The molecular mechanisms underlying these behavior abnormalities remain largely unknown. In the current study, we treated the astrocytoma cells with citral, an inhibitor of Ra synthesis. We analyzed the differences in the protein concentrations between the treated and untreated astrocytoma cells by two-dimensional gel electrophoresis (2-DE), Imagemaster software, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In total, 39 of 46 altered protein spots with significant mascot scores were identified representing 36 proteins, that were involved in significantly altered glutamate metabolism, lipid metabolism, mitochrondrial function, and oxidative stress response by Ingenuity Pathway Analysis (IPA). Altered 3-phosphoglycerate dehydrogenase (PHGDH) was also observed in western blot. These data provide some clues for explaining the behavioral changes caused by Ra deficiency, and support the hypothesis that Ra signaling is associated with some symptoms of neurodegenerative disorders and schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Malik MA, Blusztajn JK, Greenwood CE (2000) Nutrients as trophic factors in neurons and the central nervous system: role of retinoic acid. J Nutr Biochem 11:2–13. doi:10.1016/S0955-2863(99)00066-2

    Article  PubMed  CAS  Google Scholar 

  2. Lane MA, Bailey SJ (2006) Role of retinoid signaling in the adult brain. Prog Neurobiol 75:275–293. doi:10.1016/j.pneurobio.2005.03.002

    Article  CAS  Google Scholar 

  3. Carta M, Stancampiano R, Tronci E, Collu M, Usiello A, Morelli M, Fadda F (2006) Vitamin A deficiency induces motor impairments and striatal cholinergic dysfunction in rats. Neuroscience 139:1163–1172. doi:10.1016/j.neuroscience.2006.01.027

    Article  PubMed  CAS  Google Scholar 

  4. Maden M (2002) Retinoid signaling in the development of the central nervous system. Nat Rev Neurosci 3:843–853. doi:10.1038/nrn963

    Article  PubMed  CAS  Google Scholar 

  5. Jacobs S, Lie DC, DeCicco KL et al (2006) Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc Natl Acad Sci USA 103:3902–3907. doi:10.1073/pnas.0511294103

    Article  PubMed  CAS  Google Scholar 

  6. Krezel W, Ghyselinck N et al (1998) Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 279:863–867. doi:10.1126/science.279.5352.863

    Article  PubMed  CAS  Google Scholar 

  7. Etchamendy N, Enderlin V, Marighetto A, Pallet V, Higueret P, Jaffard R (2003) Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signaling. Behav Brain Res 145:37–49. doi:10.1016/S0166-4328(03)00099-8

    Article  PubMed  CAS  Google Scholar 

  8. Cocco S, Diaz G, Stancampiano R, Diana A, Carta M et al (2002) Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience 115:475–482. doi:10.1016/S0306-4522(02)00423-2

    Article  PubMed  CAS  Google Scholar 

  9. Wagner E, Luo T, Sakai Y et al (2006) Retinoic acid delineates the topography of neuronal plasticity in postnatal cerebral cortex. Eur J Neurosci 4:329–340. doi:10.1111/j.1460-9568.2006.04934.x

    Article  Google Scholar 

  10. Baharvand H, Mehrjardi NZ et al (2007) Neural differentiation from human embryonic stem cells in a defined adherent culture condition. Int J Dev Biol 51:371–378. doi:10.1387/ijdb.072280hb

    Article  PubMed  CAS  Google Scholar 

  11. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689. doi:10.1038/ncpneuro0355

    Article  PubMed  CAS  Google Scholar 

  12. Vernadakis A (1996) Glia-neuron intercommunications and synaptic plasticity. Prog Neurobiol 49:185–214. doi:10.1016/S0301-0082(96)00012-3

    Article  PubMed  CAS  Google Scholar 

  13. Nagai M, Re DB, Nagata T, Chalazonitis A et al (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622. doi:10.1038/nn1876

    Article  PubMed  CAS  Google Scholar 

  14. Wuarin L, Sidell N, de Vellis J (1990) Retinoids increase perinatal spinal cord neuronal survival and astroglial differentiation. Int J Dev Neurosci 8:317–326. doi:10.1016/0736-5748(90)90038-4

    Article  PubMed  CAS  Google Scholar 

  15. Haskell GT, LaMantia AS (2005) Retinoic acid signaling identifies a distinct precursor population in the developing and adult forebrain. J Neurosci 25:7636–7764. doi:10.1523/JNEUROSCI.0485-05.2005

    Article  PubMed  CAS  Google Scholar 

  16. Rossant J, Zirngibl R, Cado D, Shago M, Giguere V (1991) Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev 5:1333–1344. doi:10.1101/gad.5.8.1333

    Article  PubMed  CAS  Google Scholar 

  17. Kornyei Z, Gocza E et al (2007) Astroglia-derived retinoic acid is a key factor in glia-induced neurogenesis. FASEB J 21:2496–2509. doi:10.1096/fj.06-7756com

    Article  PubMed  CAS  Google Scholar 

  18. Song Y, Hui JN, Fu KK, Richman JM (2004) Control of retinoic acid synthesis and FGF expression in the nasal pit is required to pattern the craniofacial skeleton. Dev Biol 276:313–329. doi:10.1016/j.ydbio.2004.08.035

    Article  PubMed  CAS  Google Scholar 

  19. Leslie JH, Susan NH, Tracey RS, Michael AS (2001) Metabolic conversion of retinol to retinoic acid mediates the biological responsiveness of human mammary epithelial cells to retinol. J Cell Physiol 186:437–447. doi:10.1002/1097-4652(2000)9999:999<000::AID-JCP1043>3.0.CO;2-5

    Article  Google Scholar 

  20. Mey J, Hammelmann S (2000) OLN-93 oligodendrocytes synthesize all-trans-retinoic acid in vitro. Cell Tissue Res 302:49–58. doi:10.1007/s004410000259

    Article  PubMed  CAS  Google Scholar 

  21. Qian A, Cai Y et al (2000) Identification of retinoic acid-responsive elements on the HNF1alpha and HNF4alpha genes. Biochem Biophys Res Commun 276:837–842. doi:10.1006/bbrc.2000.3549

    Article  PubMed  CAS  Google Scholar 

  22. Odom DT, Zizlsperger N et al (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303:1378–1381. doi:10.1126/science.1089769

    Article  PubMed  CAS  Google Scholar 

  23. Tanaka H, Matsumura I et al (2002) E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol Cell 9:1017–1029. doi:10.1016/S1097-2765(02)00522-1

    Article  PubMed  CAS  Google Scholar 

  24. Guo QM, Malek RL et al (2000) Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res 60:5922–5928

    PubMed  CAS  Google Scholar 

  25. Shiio Y, Donohoe S (2002) Quantitative proteomic analysis of Myc oncoprotein function. EMBO J 21:5088–5096. doi:10.1093/emboj/cdf525

    Article  PubMed  CAS  Google Scholar 

  26. Wonsey DR, Zeller KI et al (2002) The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. Proc Natl Acad Sci USA 99:6649–6654. doi:10.1073/pnas.102523299

    Article  PubMed  CAS  Google Scholar 

  27. Mayanil CS, George D et al (2001) Microarray analysis detects novel Pax3 downstream target genes. J Biol Chem 276:49299–49309. doi:10.1074/jbc.M107933200

    Article  PubMed  CAS  Google Scholar 

  28. Bang AG, Papalopulu N et al (1997) Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm. Development 124:2075–2085

    PubMed  CAS  Google Scholar 

  29. Jaeken J, Detheux M, Van Maldergem L et al (1996) 3-Phosphoglycerate dehydrogenase deficiency: an inborn error of serine biosynthesis. Arch Dis Child 74:542–545

    Article  PubMed  CAS  Google Scholar 

  30. Yoshida K, Furuya S, Osuka S et al (2004) Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality. J Biol Chem 279:3573–3577. doi:10.1074/jbc.C300507200

    Article  PubMed  CAS  Google Scholar 

  31. Fuchs SA, Dorland L, der Velden MG et al (2006) d-serine in the developing human central nervous system. Ann Neurol 60:476–480. doi:10.1002/ana.20977

    Article  PubMed  Google Scholar 

  32. Furuya S, Watanabe M (2003) Novel neuroglial and glioglial relationships mediated by l-serine metabolism. Arch Histol Cytol 66:109–121. doi:10.1679/aohc.66.109

    Article  PubMed  CAS  Google Scholar 

  33. Mothet JP, Rouaud E et al (2006) A critical role for the glial-derived neuromodulator d-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell 5:267–274. doi:10.1111/j.1474-9726.2006.00216.x

    Article  PubMed  CAS  Google Scholar 

  34. Bains JS, Oliet SH (2007) Glia: they make your memories stick!. Trends Neurosci 30:417–424. doi:10.1016/j.tins.2007.06.007

    Article  PubMed  CAS  Google Scholar 

  35. Pias EK, Ekshyyan OY et al (2003) Differential effects of superoxide dismutase isoform expression on hydroperoxide-induced apoptosis in PC-12 cells. J Biol Chem 278:13294–13301. doi:10.1074/jbc.M208670200

    Article  PubMed  CAS  Google Scholar 

  36. Banki K, Hutter E et al (1998) Molecular ordering in HIV-induced apoptosis. Oxidative stress, activation of caspases, and cell survival are regulated by transaldolase. J Biol Chem 273:11944–11953. doi:10.1074/jbc.273.19.11944

    Article  PubMed  CAS  Google Scholar 

  37. Yamasaki M, Yamada K et al (2001) 3-Phosphoglycerate dehydrogenase, a key enzyme for l-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. J Neurosci 21:7691–7704

    PubMed  CAS  Google Scholar 

  38. Hakak Y, Walker JR et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98:4746–4751. doi:10.1073/pnas.081071198

    Article  PubMed  CAS  Google Scholar 

  39. Prabakaran S, Swatton JE et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697. doi:10.1038/sj.mp.4001532

    Article  PubMed  CAS  Google Scholar 

  40. Kim JM, Lee KH, Jeon YJ, Oh JH, Jeong SY, Song IS, Kim JM, Lee DS, Kim NS (2006) Identification of genes related to Parkinson’s disease using expressed sequence tags. DNA Res 13:275–286. doi:10.1093/dnares/dsl016

    Article  PubMed  CAS  Google Scholar 

  41. Muqit MM, Davidson SM et al (2004) Parkin is recruited into aggresomes in a stress-specific manner: over-expression of parkin reduces aggresome formation but can be dissociated from parkin’s effect on neuronal survival. Hum Mol Genet 13:117–135. doi:10.1093/hmg/ddh012

    Article  PubMed  CAS  Google Scholar 

  42. Palacino JJ, Sagi D et al (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622. doi:10.1074/jbc.M401135200

    Article  PubMed  CAS  Google Scholar 

  43. Drabik A, Bierczynska-Krzysik A et al (2007) Proteomics in neurosciences. Mass Spectrom Rev 26:432–450. doi:10.1002/mas.20131

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by 973 Program (2006CB910600), National Natural Science Foundation of China (30700203), Shanghai Leading Academic Discipline Project (B205), 863 Program of China, and the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-R-01). We thank all the proteomics group members for their helpful suggestions regarding both experiments and the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunling Wan or Lin He.

Additional information

Ming Zhang and Chunling Wan have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Wan, C., Ji, B. et al. Proteome alteration of U251 human astrocytoma cell after inhibiting retinoic acid synthesis. Mol Cell Biochem 323, 185–193 (2009). https://doi.org/10.1007/s11010-008-9978-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9978-z

Keywords

Navigation