Skip to main content
Log in

Peroxisome proliferator-activated receptor-α modulates insulin gene transcription factors and inflammation in adipose tissues in mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We have recently reported that PPARα deficiency leads to hypoglycaemia and hypoinsulinemia in mice (Yessoufou et al. Endocrinology 147:4410–4418, 2006). Besides, these mice exhibited high adiposity with an inflammatory state. We, therefore, assessed, in this study, the effects of PPARα deficiency on the expression of mRNA encoding for the insulin gene transcription factors in pancreatic β-cells along with those implicated in inflammation in adipose tissues. On fasting, the adult PPARα-null mice were hypoglycemic. Serum insulin concentrations and its pancreatic mRNA transcripts were downregulated in PPARα-null mice, suggesting that PPARα gene deletion contributes to low insulin gene transcription. The PPARα gene deletion downregulates the mRNA expression of insulin gene transcription factors, i.e., Pdx-1, Nkx6.1, and MafA. Besides, the pancreatic function was diminished by PPARα deficiency as PPARα-null mice expressed low pancreatic Glut2 and glucokinase mRNA. PPARα-null mice also expressed high adiponectin and leptin mRNA levels compared to wild type animals. Adipose tissues of PPARα-null mice exhibited upregulation of CD14 and CD68 mRNA, generally expressed by macrophages. PPARα gene deletion downregulates the adipocyte mRNA of certain pro-inflammatory agents, like MCP-1, TNF-α, IL-1β, IL-6, and RANTES, though pro-inflammatory TLR-2 and TLR-4 mRNAs were upregulated in the adipose tissues. Our results suggest that PPARα deficiency, in mice, is implicated in the modulation of insulin gene transcription and inflammatory status in adipose tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

GK:

Glucokinase

Nkx6.1:

NK6 transcription factor related-locus-1

Pdx-1:

Pancreatic and duodenal homeobox-1

PPARα:

Peroxisome proliferator-activated receptor-α

MCP-1:

Monocyte-chemoattractant protein-1

RANTES:

Regulated on activation of normal T cell expressed and secreted

SREBP1c:

Sterol response element-binding protein 1c

TG:

Triglyceride

TLR:

Toll-like receptor

FFA:

Free fatty acids

WAT:

White adipose tissue

PBS:

Phosphate buffered saline

WT:

Wild type

References

  1. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650. doi:10.1038/347645a0

    Article  PubMed  CAS  Google Scholar 

  2. Wahli W (2002) Peroxisome proliferator-activated receptors (PPARs): from metabolic control to epidermal wound healing. Swiss Med Wkly 132:83–91

    PubMed  CAS  Google Scholar 

  3. Braissant O, Foufelle F, Scotto C et al (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137:354–366. doi:10.1210/en.137.1.354

    Article  PubMed  CAS  Google Scholar 

  4. Zambon A, Gervois P, Pauletto P et al (2006) Modulation of hepatic inflammatory risk markers of cardiovascular diseases by PPAR-{alpha} activators: clinical and experimental evidence. Arterioscler Thromb Vasc Biol 26:977–986. doi:10.1161/01.ATV.0000204327.96431.9a

    Article  PubMed  CAS  Google Scholar 

  5. Yessoufou A, Hichami A, Besnard P et al (2006) PPARα deficiency increases the risk of maternal abortion and neonatal mortality in murine pregnancy with or without diabetes mellitus: modulation of T cell differentiation. Endocrinology 147:4410–4418. doi:10.1210/en.2006-0067

    Article  PubMed  CAS  Google Scholar 

  6. Guerre-Millo M, Rouault C, Poulain P et al (2001) PPAR-alpha-null mice are protected from high-fat diet-induced insulin resistance. Diabetes 50:2809–2814. doi:10.2337/diabetes.50.12.2809

    Article  PubMed  CAS  Google Scholar 

  7. Guillausseau PJ (2003) Pathogenesis of type 2 diabetes mellitus. Rev Med Interne 24:730–737. doi:10.1016/S0248-8663(03)00244-3

    Article  PubMed  Google Scholar 

  8. German K, Bedwani J, Davies J et al (1994) An assessment of the contribution of visco-elastic factors in the aetiology of poor compliance in the human neuropathic bladder. Br J Urol 74:744–748

    Article  PubMed  CAS  Google Scholar 

  9. Wicksteed B, Alarcon C, Briaud I et al (2003) Glucose-induced translational control of proinsulin biosynthesis is proportional to preproinsulin mRNA levels in islet beta-cells but not regulated via a positive feedback of secreted insulin. J Biol Chem 278:42080–42090. doi:10.1074/jbc.M303509200

    Article  PubMed  CAS  Google Scholar 

  10. Tillmar L, Carlsson C, Welsh N (2002) Control of insulin mRNA stability in rat pancreatic islets. Regulatory role of a 3′-untranslated region pyrimidine-rich sequence. J Biol Chem 277:1099–1106. doi:10.1074/jbc.M108340200

    Article  PubMed  CAS  Google Scholar 

  11. Johnson JD, Ahmed NT, Luciani DS et al (2003) Increased islet apoptosis in PDX1 +/− mice. J Clin Invest 111:1147–1160

    PubMed  CAS  Google Scholar 

  12. Sander M, Sussel L, Conners J et al (2000) Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 127:5533–5540

    PubMed  CAS  Google Scholar 

  13. Schisler JC, Jensen PB, Taylor DG et al (2005) The Nkx6.1 homeodomain transcription factor suppresses glucagon expression and regulates glucose-stimulated insulin secretion in islet beta cells. Proc Natl Acad Sci USA 102:7297–7302. doi:10.1073/pnas.0502168102

    Article  PubMed  CAS  Google Scholar 

  14. Docherty HM, Hay CW, Ferguson LA et al (2005) Relative contribution of PDX-1, MafA and E47/beta2 to the regulation of the human insulin promoter. Biochem J 389:813–820. doi:10.1042/BJ20041891

    Article  PubMed  CAS  Google Scholar 

  15. Waki H, Tontonoz P (2007) Endocrine functions of adipose tissue. Annu Rev Pathol 2:31–56. doi:10.1146/annurev.pathol.2.010506.091859

    Article  PubMed  CAS  Google Scholar 

  16. Weisberg SP, McCann D, Desai M et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  17. Triantafilou M, Triantafilou K (2002) Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 23:301–304. doi:10.1016/S1471-4906(02)02233-0

    Article  PubMed  CAS  Google Scholar 

  18. Wu H, Ghosh S, Perrard XD et al (2007) T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 115:1029–1038. doi:10.1161/CIRCULATIONAHA.106.638379

    Article  PubMed  CAS  Google Scholar 

  19. Lee SS, Pineau T, Drago J et al (1995) Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 15:3012–3022

    PubMed  CAS  Google Scholar 

  20. Bihan H, Rouault C, Reach G et al (2005) Pancreatic islet response to hyperglycemia is dependent on peroxisome proliferator-activated receptor alpha (PPARalpha). FEBS Lett 579:2284–2288. doi:10.1016/j.febslet.2005.03.020

    Article  PubMed  CAS  Google Scholar 

  21. Folch J, Lees M, Stanley Sloane GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  22. Slover HT, Lanza E (1979) Quantitative analysis of food fatty acids by capillary gas chromatography. J Am Oil Chem Soc 56:933–943. doi:10.1007/BF02674138

    Article  CAS  Google Scholar 

  23. Xu H, Barnes GT, Yang Q et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    PubMed  CAS  Google Scholar 

  24. Yoshikawa H, Tajiri Y, Sako Y et al (2001) Effects of free fatty acids on beta-cell functions: a possible involvement of peroxisome proliferator-activated receptors alpha or pancreatic/duodenal homeobox. Metabolism 50:613–618. doi:10.1053/meta.2001.22565

    Article  PubMed  CAS  Google Scholar 

  25. Kroetz DL, Yook P, Costet P et al (1998) Peroxisome proliferator-activated receptor alpha controls the hepatic CYP4A induction adaptive response to starvation and diabetes. J Biol Chem 273:31581–31589. doi:10.1074/jbc.273.47.31581

    Article  PubMed  CAS  Google Scholar 

  26. Kersten S, Seydoux J, Peters JM et al (1999) Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103:1489–1498. doi:10.1172/JCI6223

    Article  PubMed  CAS  Google Scholar 

  27. Leibiger B, Moede T, Uhles S et al (2002) Short-term regulation of insulin gene transcription. Biochem Soc Trans 30:312–317. doi:10.1042/BST0300312

    Article  PubMed  CAS  Google Scholar 

  28. Lawrence MC, McGlynn K, Park BH et al (2005) ERK1/2-dependent activation of transcription factors required for acute and chronic effects of glucose on the insulin gene promoter. J Biol Chem 280:26751–26759. doi:10.1074/jbc.M503158200

    Article  PubMed  CAS  Google Scholar 

  29. Ahlgren U, Jonsson J, Jonsson L et al (1998) Beta-cell-specific inactivation of the mouse Ipf1/PDX1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev 12:1763–1768. doi:10.1101/gad.12.12.1763

    Article  PubMed  CAS  Google Scholar 

  30. Peters JM, Hennuyer N, Staels B et al (1997) Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor alpha-deficient mice. J Biol Chem 272:27307–27312. doi:10.1074/jbc.272.43.27307

    Article  PubMed  CAS  Google Scholar 

  31. Costet P, Legendre C, More J et al (1998) Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J Biol Chem 273:29577–29585. doi:10.1074/jbc.273.45.29577

    Article  PubMed  CAS  Google Scholar 

  32. Campbell FM, Kozak R, Wagner A et al (2002) A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J Biol Chem 277:4098–4103. doi:10.1074/jbc.M106054200

    Article  PubMed  CAS  Google Scholar 

  33. Park CW, Kim HW, Ko SH et al (2006) Accelerated diabetic nephropathy in mice lacking the peroxisome proliferator-activated receptor alpha. Diabetes 55:885–893. doi:10.2337/diabetes.55.04.06.db05-1329

    Article  PubMed  CAS  Google Scholar 

  34. Djouadi F, Weinheimer CJ, Saffitz JE et al (1998) A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator-activated receptor alpha-deficient mice. J Clin Invest 102:1083–1091. doi:10.1172/JCI3949

    Article  PubMed  CAS  Google Scholar 

  35. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM et al (1996) PPARα and PPAR activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 15:5336–5348

    PubMed  CAS  Google Scholar 

  36. Staels B, Vu-Dac N, Kosykh VA et al (1995) Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase. J Clin Invest 95:705–712. doi:10.1172/JCI117717

    Article  PubMed  CAS  Google Scholar 

  37. Hansmannel F, Mordier S, Iynedjian PB (2006) Insulin induction of glucokinase and fatty acid synthase in hepatocytes: analysis of the roles of sterol-regulatory-element-binding protein-1c and liver × receptor. Biochem J 399:275–283. doi:10.1042/BJ20060811

    Article  PubMed  CAS  Google Scholar 

  38. Hebbachi AM, Knight BL, Wiggins D et al (2008) PPARalpha-deficiency abolishes the response of lipogenic gene expression to re-feeding. Restoration of the normal response by activation of LXRalpha. J Biol Chem 283:4866–4876. doi:10.1074/jbc.M709471200

    Article  PubMed  CAS  Google Scholar 

  39. Crespin SR, Greenough WB 3rd, Steinberg D (1969) Stimulation of insulin secretion by infusion of free fatty acids. J Clin Invest 48(10):1934–1943. doi:10.1172/JCI106160

    Article  PubMed  CAS  Google Scholar 

  40. Malaisse WJ, Malaisse-Lagae F (1968) Stimulation of insulin secretion by noncarbohydrate metabolites. J Lab Clin Med 72(3):438–448

    PubMed  CAS  Google Scholar 

  41. Zhou YP, Grill VE (1994) Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Invest 93(2):870–876. doi:10.1172/JCI117042

    Article  PubMed  CAS  Google Scholar 

  42. Im SS, Kim SY, Kim HI et al (2006) Transcriptional regulation of glucose sensors in pancreatic beta cells and liver. Curr Diabetes Rev 2:11–18. doi:10.2174/157339906775473581

    Article  PubMed  CAS  Google Scholar 

  43. Liu YQ, Nevin PW, Leahy JL (2000) Beta-cell adaptation in 60% pancreatectomy rats that preserves normoinsulinemia and normoglycemia. Am J Physiol Endocrinol Metab 279:E68–E73

    PubMed  CAS  Google Scholar 

  44. Wang MY, Koyama K, Shimabururo M (1998) Overexpression of leptin receptors in pancreatic islets of Zucker diabetic fatty rats restores GLUT-2, glucokinase, and glucose-stimulated insulin secretion. Proc Natl Acad Sci USA 95:11921–11926. doi:10.1073/pnas.95.20.11921

    Article  PubMed  CAS  Google Scholar 

  45. Lalloyer F, Vandewalle B, Percevault F et al (2006) Peroxisome proliferator-activated receptor alpha improves pancreatic adaptation to insulin resistance in obese mice and reduces lipotoxicity in human islets. Diabetes 55:1605–1613. doi:10.2337/db06-0016

    Article  PubMed  CAS  Google Scholar 

  46. Diez JJ, Iglesias P (2003) The role of the novel adipocyte-derived hormone adiponectin in human and possible biological roles. Eur J Endocrinol 148:293–300. doi:10.1530/eje.0.1480293

    Article  PubMed  CAS  Google Scholar 

  47. Dandona P, Aljada A, Bandyopadhyay A et al (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7. doi:10.1016/j.it.2003.10.013

    Article  PubMed  CAS  Google Scholar 

  48. Khazen W, M’bika JP, Tomkiewicz C et al (2005) Expression of macrophage-selective markers in human and rodent adipocytes. FEBS Lett 579:5631–5634

    PubMed  CAS  Google Scholar 

  49. Cousin B, Munoz O, Andre M et al (1999) A role for preadipocytes as macrophage-like cells. FASEB J 13:305–312

    PubMed  CAS  Google Scholar 

  50. Lin Y, Lee H, Berg AH et al (2000) The lipopolysaccharide-activated toll-like receptor (TLR)-4 induces synthesis of the closely related receptor TLR-2 in adipocytes. J Biol Chem 275:24255–24263. doi:10.1074/jbc.M002137200

    Article  PubMed  CAS  Google Scholar 

  51. Creely SJ, McTernan PG, Kusminski CM et al (2007) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 292:E740–E747. doi:10.1152/ajpendo.00302.2006

    Article  PubMed  CAS  Google Scholar 

  52. Batra A, Pietsch J, Fedke I et al (2007) Leptin-dependent toll-like receptor expression and responsiveness in preadipocytes and adipocytes. Am J Pathol 170:1931–1941. doi:10.2353/ajpath.2007.060699

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ministry of High Education, Republic of Benin, which granted a scholarship to Jean-Marc Atègbo and Eugène Attakpa. We express our sincere thanks to Dr. F. J. Gonzalez, National Cancer Institute who allowed us to use PPARα-null mice under the MTA number 1-23651-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naim A. Khan.

Additional information

A. Yessoufou and J.-M. Atègbo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yessoufou, A., Atègbo, JM., Attakpa, E. et al. Peroxisome proliferator-activated receptor-α modulates insulin gene transcription factors and inflammation in adipose tissues in mice. Mol Cell Biochem 323, 101–111 (2009). https://doi.org/10.1007/s11010-008-9968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9968-1

Keywords

Navigation