Skip to main content
Log in

Impact of plasminogen on an in vitro wound healing model based on a perfusion cell culture system

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Vascular reorganization in wound healing is a complex process, which involves coagulation, endothelial cell proliferation and migration, basement membrane regeneration, and fibrinolysis. During this healing process, the hemostatic system and the angiogenic system are intimately interconnected. To elucidate the contribution of plasminogen in the process of wound healing, we have established a perfusion cell culture system. Using this novel cell culture system, we found that addition of plasminogen in the perfusion medium allowed the “scratch-wounded” endothelial cells to recover completely, while mini-plasminogen only affected the migration but not the proliferation of the endothelial cells. In the process of recovery with the addition of plasminogen, significant plasmin activity could only be detected when the growth of the endothelial cells have almost reached confluence. This finding indicates that wound healing is triggered and promoted during the absence of the proteolytic activity of plasmin. In addition, we could not detect any matrix metalloproteinase activity in the perfusion culture medium throughout the whole culture period. However, we did found that the circulating medium collected from the perfusion system at the early phase of the healing process has stimulatory activity on the growth of endothelial cells, but the proliferative activity decreased back to the basal level when the cells reached confluence. Thus, by using the perfusion cell culture system, we found that proliferation of endothelial cells is regulated by plasminogen and the wound healing process is controlled by a temporal interaction between the endothelial cells and plasminogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li J, Zhang YP, Kirsner RS (2003) Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech 60:107–114. doi:10.1002/jemt.10249

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    PubMed  CAS  Google Scholar 

  3. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328. doi:10.1016/0092-8674(94)90200-3

    Article  PubMed  CAS  Google Scholar 

  4. Dong Z, Kumar R, Yang X, Fidler IJ (1997) Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88:801–810. doi:10.1016/S0092-8674(00)81926-1

    Article  PubMed  CAS  Google Scholar 

  5. Lijnen HR, Ugwu F, Bini A, Collen D (1998) Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry 37:4699–4702. doi:10.1021/bi9731798

    Article  PubMed  CAS  Google Scholar 

  6. Gately S, Twardowski P, Stack MS, Patrick M, Boggio L, Cundiff DL et al (1996) Human prostate carcinoma cells express enzymatic activity that converts human plasminogen to the angiogenesis inhibitor, angiostatin. Cancer Res 56:4887–4890

    PubMed  CAS  Google Scholar 

  7. Cao Y, Chen A, An SS, Ji RW, Davidson D, Llinás M (1997) Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem 272:22924–22928. doi:10.1074/jbc.272.36.22924

    Article  PubMed  CAS  Google Scholar 

  8. Lijnen HR, Van Hoef B, Ugwu F, Collen D, Roelants I (2000) Specific proteolysis of human plasminogen by a 24 kDa endopeptidase from a novel Chryseobacterium Sp. Biochemistry 39:479–488. doi:10.1021/bi992014r

    Article  PubMed  CAS  Google Scholar 

  9. Gately S, Twardowski P, Stack MS, Cundiff DL, Grella D, Castellino FJ et al (1997) The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci USA 94:10868–11087. doi:10.1073/pnas.94.20.10868

    Article  PubMed  CAS  Google Scholar 

  10. Forsgren M, Råden B, Israelsson M, Larsson K, Hedén LO (1987) Molecular cloning and characterization of a full-length cDNA clone for human plasminogen. FEBS Lett 213:254–260. doi:10.1016/0014-5793(87)81501-6

    Article  PubMed  CAS  Google Scholar 

  11. Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21:1104–1117. doi:10.1161/hq0701.093685

    Article  PubMed  CAS  Google Scholar 

  12. Pins GD, Collins-Pavao ME, Van De Water L, Yarmush ML, Morgan JR (2000) Plasmin triggers rapid contraction and degradation of fibroblast-populated collagen lattices. J Invest Dermatol 114:647–653. doi:10.1046/j.1523-1747.2000.00858.x

    Article  PubMed  CAS  Google Scholar 

  13. Roth D, Piekarek M, Paulsson M, Christ H, Bloch W, Krieg T et al (2006) Plasmin modulates vascular endothelial growth factor-A-mediated angiogenesis during wound repair. Am J Pathol 168:670–684. doi:10.2353/ajpath.2006.050372

    Article  PubMed  CAS  Google Scholar 

  14. Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 271:10079–10086. doi:10.1074/jbc.271.17.10079

    Article  PubMed  CAS  Google Scholar 

  15. Carmeliet P, Moons L, Dewerchin M, Rosenberg S, Herbert JM, Lupu F et al (1998) Receptor-independent role of urokinase-type plasminogen activator in pericellular plasmin and matrix metalloproteinase proteolysis during vascular wound healing in mice. J Cell Biol 140:233–245. doi:10.1083/jcb.140.1.233

    Article  PubMed  CAS  Google Scholar 

  16. Carmeliet P, Moons L, Ploplis V, Plow E, Collen D (1997) Impaired arterial neointima formation in mice with disruption of the plasminogen gene. J Clin Invest 99:200–208. doi:10.1172/JCI119148

    Article  PubMed  CAS  Google Scholar 

  17. Eitzman DT, McCoy RD, Zheng X, Fay WP, Shen T, Ginsburg D (1996) Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J Clin Invest 97:232–237. doi:10.1172/JCI118396

    Article  PubMed  CAS  Google Scholar 

  18. Romer J, Bugge TH, Pyke C, Lund LR, Flick MJ, Degen JL et al (1996) Impaired wound healing in mice with a disrupted plasminogen gene. Nat Med 2:287–292. doi:10.1038/nm0396-287

    Article  PubMed  CAS  Google Scholar 

  19. Kitching AR, Holdsworth SR, Ploplis VA, Plow EF, Collen D, Carmeliet P et al (1997) Plasminogen and plasminogen activators protect against renal injury in crescentic glomerulonephritis. J Exp Med 185:963–968. doi:10.1084/jem.185.5.963

    Article  PubMed  CAS  Google Scholar 

  20. Dano K, Behrendt N, Brünner N, Ellis V, Ploug M, Pyke C (1994) The urokinase receptor. Protein structure and role in plasminogen activation and cancer invasion. Fibrinolysis 8(Suppl. 1):189–203. doi:10.1016/0268-9499(94)90717-X

    Article  Google Scholar 

  21. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746. doi:10.1056/NEJM199909023411006

    Article  PubMed  CAS  Google Scholar 

  22. Li WY, Chong SS, Huang EY, Tuan TL (2003) Plasminogen activator/plasmin system: a major player in wound healing? Wound Repair Regen 11:239–247. doi:10.1046/j.1524-475X.2003.11402.x

    Article  PubMed  Google Scholar 

  23. Hertig A, Rondeau E (2004) Role of the coagulation/fibrinolysis system in fibrin-associated glomerular injury. J Am Soc Nephrol 15:844–853. doi:10.1097/01.ASN.0000115400.52705.83

    Article  PubMed  Google Scholar 

  24. Minuth WW (1991) MINUSHEET—a new method for “natural” culture conditions of epithelia in vitro. ALTEX 8:18–30

    PubMed  Google Scholar 

  25. Sanzo MA, Marasa JC, Wittwer AJ, Siegel NR, Harakas NK, Feder J (1987) Purification and characterization of a tissue plasminogen activator-inhibitor complex from human umbilical vein endothelial cell conditioned medium. Biochemistry 26:7443–7449. doi:10.1021/bi00397a037

    Article  PubMed  CAS  Google Scholar 

  26. Hayashi M, Tamura Y, Dohmae N, Kojima S, Shimonaka M (2008) Plasminogen N-terminal activation peptide modulates the activity of angiostatin-related peptides on endothelial cell proliferation and migration. Biochem Biophys Res Commun 369:635–640. doi:10.1016/j.bbrc.2008.02.050

    Article  PubMed  CAS  Google Scholar 

  27. O’Neil CH, Boffa MB, Hancock MA, Pickering JG, Koschinsky ML (2004) Stimulation of vascular smooth muscle cell proliferation and migration by apolipoprotein(a) is dependent on inhibition of transforming growth factor-b activation and on the presence of kringle IV type 9. J Biol Chem 279:55187–55195. doi:10.1074/jbc.M409860200

    Article  PubMed  CAS  Google Scholar 

  28. Herron GS, Banda MJ, Clark EJ, Gavrilovic J, Werb Z (1986) Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. J Biol Chem 261:2814–2818

    PubMed  CAS  Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  30. Levin EG, Loskutoff DJ (1982) Cultured bovine endothelial cells produce both urokinase and tissue-type plasminogen activators. J Cell Biol 94:631–636. doi:10.1083/jcb.94.3.631

    Article  PubMed  CAS  Google Scholar 

  31. van Mourik JA, Lawrence DA, Loskutoff DJ (1984) Purification of an inhibitor of plasminogen activator (antiactivator) synthesized by endothelial cells. J Biol Chem 259:14914–14921

    PubMed  Google Scholar 

  32. Zucker S, Conner C, DiMassmo BI, Ende H, Drews M, Seiki M et al (1995) Thrombin induces the activation of progelatinase A in vascular endothelial cells. Physiologic regulation of angiogenesis. J Biol Chem 270:23730–23738. doi:10.1074/jbc.270.40.23730

    Article  PubMed  CAS  Google Scholar 

  33. Lafleur MA, Hollenberg MD, Atkinson SJ, Knäuper V, Murphy G, Edwards DR (2001) Activation of pro-(matrix metalloproteinase-2) (pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63 kDa active species. Biochem J 357:107–115. doi:10.1042/0264-6021:3570107

    Article  PubMed  CAS  Google Scholar 

  34. Davis GE, Pintar Allen KA, Salazar R, Maxwell SA (2001) Matrix metalloproteinase-1 and -9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J Cell Sci 114:917–930

    PubMed  CAS  Google Scholar 

  35. Booyse FM, Scheinbuks J, Lin PH, Traylor M, Bruce R (1988) Isolation and interrelationships of the multiple molecular tissue-type and urokinase-type plasminogen activator forms produced by cultured human umbilical vein endothelial cells. J Biol Chem 263:15129–15138

    PubMed  CAS  Google Scholar 

  36. Levin EG (1983) Latent tissue plasminogen activator produced by human endothelial cells in culture: Evidence for an enzyme-inhibitor complex. Proc Natl Acad Sci USA 80:6804–6808. doi:10.1073/pnas.80.22.6804

    Article  PubMed  CAS  Google Scholar 

  37. Chapman HA (1997) Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr Opin Cell Biol 9:714–724. doi:10.1016/S0955-0674(97)80126-3

    Article  PubMed  CAS  Google Scholar 

  38. Vogten JM, Reijerkerk A, Meijers JC, Voest EE, Borel Rinkes IH, Gebbink MF (2003) The role of the fibrinolytic system in corneal angiogenesis. Angiogenesis 6:311–316. doi:10.1023/B:AGEN.0000029414.24060.fe

    Article  PubMed  CAS  Google Scholar 

  39. Leksa V, Godar S, Schiller HB, Fuertbauer E, Muhammad A, Slezakova K et al (2005) TGF-β-induced apoptosis in endothelial cells mediated by M6P/IGFII-R and mini-plasminogen. J Cell Sci 118:4577–4586. doi:10.1242/jcs.02587

    Article  PubMed  CAS  Google Scholar 

  40. Duboscq C, Genoud V, Parborell MF, Kordich LC (1997) Impaired clot lysis by rt-PA catalyzed mini-plasminogen activation. Thromb Res 86:505–513. doi:10.1016/S0049-3848(97)00099-6

    Article  PubMed  CAS  Google Scholar 

  41. Wu HL, Wu IS, Fang RY, Hau JS, Wu DH, Chang BI et al (1992) The binding of plasminogen fragments to cultured human umbilical vein endothelial cells. Biochem Biophys Res Commun 188:703–711. doi:10.1016/0006-291X(92)91113-5

    Article  PubMed  CAS  Google Scholar 

  42. Goretzki L, Lombardo CR, Stallcup WB (2000) Binding of the NG2 proteoglycan to kringle domains modulates the functional properties of angiostatin and plasmin(ogen). J Biol Chem 275:28625–28633. doi:10.1074/jbc.M002290200

    Article  PubMed  CAS  Google Scholar 

  43. Narasaki R, Kuribayashi H, Shimizu K, Imamura D, TSato T, Hasumi K (2005) Bacillolysin MA, a novel bacterial metalloproteinase that produces angiostatin-like fragments from plasminogen and activates protease zymogens in the coagulation and fibrinolysis systems. J Biol Chem 280:14278–14287. doi:10.1074/jbc.M500241200

    Article  PubMed  CAS  Google Scholar 

  44. Morikawa W, Yamamoto K, Ishikawa S, Takemoto S, Ono M, Fukushi J et al (2000) Angiostatin generation by cathepsin D secreted by human prostate carcinoma cells. J Biol Chem 275:38912–38920. doi:10.1074/jbc.M005402200

    Article  PubMed  CAS  Google Scholar 

  45. Bykowska K, Levin EG, Rijken DC, Loskutoff DJ, Collen D (1982) Characterization of a plasminogen activator secreted by cultured bovine aortic endothelial cells. Biochim Biophys Acta 703:113–115

    PubMed  CAS  Google Scholar 

  46. Rijken DC, van Hinsbergh VW, Sens EH (1984) Quantitation of tissue-type plasminogen activator in human endothelial cell cultures by use of an enzyme immunoassay. Thromb Res 33:145–153. doi:10.1016/0049-3848(84)90175-0

    Article  PubMed  CAS  Google Scholar 

  47. Sprengers ED, Verheijen JH, Van Hinsbergh VW, Emeis JJ (1984) Evidence for the presence of two different fibrinolytic inhibitors in human endothelial cell conditioned medium. Biochim Biophys Acta 801:163–170

    PubMed  CAS  Google Scholar 

  48. Wu HL, Chang BI, Wu DH, Chang LC, Gong CC, Lou KL et al (1990) Interaction of plasminogen and fibrin in plasminogen activation. J Biol Chem 265:19658–19664

    PubMed  CAS  Google Scholar 

  49. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494. doi:10.1074/jbc.274.31.21491

    Article  PubMed  CAS  Google Scholar 

  50. Mimuro J, Schleef RR, Loskutoff DJ (1987) Extracellular matrix of cultured bovine aortic endothelial cells contains functionally active type 1 plasminogen activator inhibitor. Blood 70:721–728

    PubMed  CAS  Google Scholar 

  51. Declerck PJ, De Mol M, Alecci MC, Baudner S, Paques EP, Preissner KT et al (1988) Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. Identification as a multifunctional form of S protein (vitronectin). J Biol Chem 263:15454–15461

    PubMed  CAS  Google Scholar 

  52. Devy L, Blacher S, Grignet-Debrus C, Bajou K, Masson V, Gerard RD et al (2002) The pro- or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. FASEB J 16:147–154. doi:10.1096/fj.01-0552com

    Article  PubMed  CAS  Google Scholar 

  53. Hasenstab D, Lea H, Clowes AW (2000) Local plasminogen activator inhibitor type 1 overexpression in rat carotid artery enhances thrombosis and endothelial regeneration while inhibiting intimal thickening. Arterioscler Thromb Vasc Biol 20:853–859

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are deeply grateful to Dr. Nicholas Ling, Neurocrine Biosciences, for critical reading of the manuscript and helpful advice and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoyuki Shimonaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, M., Matsuzaki, Y. & Shimonaka, M. Impact of plasminogen on an in vitro wound healing model based on a perfusion cell culture system. Mol Cell Biochem 322, 1–13 (2009). https://doi.org/10.1007/s11010-008-9934-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9934-y

Keywords

Navigation