Skip to main content
Log in

Gene expression profile of duodenal epithelial cells in response to chronic metabolic acidosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chronic metabolic acidosis (CMA) affects ion transport, permeability, and metabolism of the intestinal absorptive cells. Most effects of CMA on the intestine are long-term adaptations at genomic level. To identify the CMA-regulated genes, the Illumina’s microarray featuring high-performance BeadArray technology was performed on RNA samples from the rat duodenal epithelial cells exposed to long-standing acidemia. After 21 days of CMA, we found 423 transcripts upregulated and 261 transcripts downregulated. Gene ontology analysis suggested effects of CMA on cellular processes, such as cell adhesion, proliferation, fuel metabolism, and biotransformation. Interestingly, 27 upregulated transcripts (e.g., Aqp1, Cacnb1, Atp1a2, Kcnab2, and Slc2a1) and 13 downregulated transcripts (e.g., Slc17a7, Slc9a4, and Slc30a3) are involved in the absorption of water, ions, and nutrients. Some upregulated genes, such as Slc38a5 and Slc1a7 encoding glutamine transporters, may be parts of the total body adaptation to alleviate negative nitrogen balance. Therefore, the present results provided a novel genome-wide information for further investigations of the mechanism of CMA effect on the intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wiederkehr M, Krapf R (2001) Metabolic and endocrine effects of metabolic acidosis in humans. Swiss Med Wkly 131:127–132

    PubMed  CAS  Google Scholar 

  2. Menconi MJ, Salzman AL, Unno N, Ezzell RM, Casey DM, Brown DA, Tsuji Y, Fink MP (1997) Acidosis induces hyperpermeability in Caco-2BBe cultured intestinal epithelial monolayers. Am J Physiol 272:G1007–G1021

    PubMed  CAS  Google Scholar 

  3. Epler MJ, Souba WW, Meng Q, Lin C, Karinch AM, Vary TC, Pan M (2003) Metabolic acidosis stimulates intestinal glutamine absorption. J Gastrointest Surg 7:1045–1052. doi:10.1016/j.gassur.2003.09.005

    Article  PubMed  Google Scholar 

  4. Charoenphandhu N, Tudpor K, Pulsook N, Krishnamra N (2006) Chronic metabolic acidosis stimulated transcellular and solvent drag-induced calcium transport in the duodenum of female rats. Am J Physiol Gastrointest Liver Physiol 291:G446–G455. doi:10.1152/ajpgi.00108.2006

    Article  PubMed  CAS  Google Scholar 

  5. Gafter U, Edelstein S, Hirsh J, Levi J (1986) Metabolic acidosis enhances 1,25(OH)2D3-induced intestinal absorption of calcium and phosphorus in rats. Miner Electrolyte Metab 12:213–217

    PubMed  CAS  Google Scholar 

  6. Feldman GM (1989) Effect of chronic metabolic acidosis on net electrolyte transport in rat colon. Am J Physiol 256:G1036–G1040

    PubMed  CAS  Google Scholar 

  7. Goldfarb DS, Ingrassia PM, Charney AN (1987) Effect of systemic acid-base balance on ileal secretion. Am J Physiol 253:G330–G335

    PubMed  CAS  Google Scholar 

  8. Charney AN, Ingrassia PM, Thaler SM, Keane MG (1989) Effect of systemic pH on models of altered ileal transport in the rat. Gastroenterology 96:331–338

    PubMed  CAS  Google Scholar 

  9. Feldman GM, Charney AN (1980) Effect of acute metabolic alkalosis and acidosis on intestinal electrolyte transport in vivo. Am J Physiol 239:G427–G436

    PubMed  CAS  Google Scholar 

  10. Stauber A, Radanovic T, Stange G, Murer H, Wagner CA, Biber J (2005) Regulation of intestinal phosphate transport II. Metabolic acidosis stimulates Na+-dependent phosphate absorption and expression of the Na+-Pi cotransporter NaPi-IIb in small intestine. Am J Physiol Gastrointest Liver Physiol 288:G501–G506. doi:10.1152/ajpgi.00168.2004

    Article  PubMed  CAS  Google Scholar 

  11. Pan M, Meng Q, Choudry HA, Karinch AM, Lin C, Souba WW (2004) Stimulation of intestinal glutamine absorption in chronic metabolic acidosis. Surgery 136:127–134. doi:10.1016/j.surg.2004.04.005

    Article  PubMed  Google Scholar 

  12. Carpenter JF, Hand SC (1986) Reversible dissociation and inactivation of phosphofructokinase in the ischemic rat heart. Am J Physiol 250:R512–R518

    PubMed  CAS  Google Scholar 

  13. Baylor AEIII, Diebel LN, Liberati DM, Dulchavsky SA, Brown WJ, Diglio CA (2003) The synergistic effects of hypoxia/reoxygenation or tissue acidosis and bacteria on intestinal epithelial cell apoptosis. J Trauma 55:241–247. doi:10.1097/01.TA.0000079249.50967.C5

    Article  PubMed  Google Scholar 

  14. Cetin S, Dunklebarger J, Li J, Boyle P, Ergun O, Qureshi F, Ford H, Upperman J, Watkins S, Hackam DJ (2004) Endotoxin differentially modulates the basolateral and apical sodium/proton exchangers (NHE) in enterocytes. Surgery 136:375–383. doi:10.1016/j.surg.2004.05.013

    Article  PubMed  Google Scholar 

  15. Charoenphandhu N, Wongdee K, Tudpor K, Pandaranandaka J, Krishnamra N (2007) Chronic metabolic acidosis upregulated claudin mRNA expression in the duodenal enterocytes of female rats. Life Sci 80:1729–1737. doi:10.1016/j.lfs.2007.01.063

    Article  PubMed  CAS  Google Scholar 

  16. Pedoto A, Nandi J, Oler A, Camporesi EM, Hakim TS, Levine RA (2001) Role of nitric oxide in acidosis-induced intestinal injury in anesthetized rats. J Lab Clin Med 138:270–276. doi:10.1067/mlc.2001.118176

    Article  PubMed  CAS  Google Scholar 

  17. Kuhn K, Baker SC, Chudin E, Lieu MH, Oeser S, Bennett H, Rigault P, Barker D, McDaniel TK, Chee MS (2004) A novel, high-performance random array platform for quantitative gene expression profiling. Genome Res 14:2347–2356. doi:10.1101/gr.2739104

    Article  PubMed  CAS  Google Scholar 

  18. Jantarajit W, Thongon N, Pandaranandaka J, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N (2007) Prolactin-stimulated transepithelial calcium transport in duodenum and Caco-2 monolayer are mediated by the phosphoinositide 3-kinase pathway. Am J Physiol Endocrinol Metab 293:E372–E384. doi:10.1152/ajpendo.00142.2007

    Article  PubMed  CAS  Google Scholar 

  19. Sigala S, Bodei S, Missale C, Zani D, Simeone C, Cunico SC, Spano PF (2008) Gene expression profile of prostate cancer cell lines: effect of nerve growth factor treatment. Mol Cell Endocrinol 284:11–20. doi:10.1016/j.mce.2007.12.015

    Article  PubMed  CAS  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \( 2^{{ - \Updelta \Updelta {\text{C}}_{\text{T}} }} \) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Google Scholar 

  21. Favus MJ, Bushinsky DA, Coe FL (1986) Effects of medium pH on duodenal and ileal calcium active transport in the rat. Am J Physiol 251:G695–G700

    PubMed  CAS  Google Scholar 

  22. Cox HM (2007) Neuropeptide Y receptors; antisecretory control of intestinal epithelial function. Auton Neurosci 133:76–85. doi:10.1016/j.autneu.2006.10.005

    Article  PubMed  CAS  Google Scholar 

  23. Antunes-Rodrigues J, de Castro M, Elias LL, Valenca MM, McCann SM (2004) Neuroendocrine control of body fluid metabolism. Physiol Rev 84:169–208. doi:10.1152/physrev.00017.2003

    Article  PubMed  CAS  Google Scholar 

  24. Margolius HS, Halushka PV, Chao J, Miller DH, Cuthbert AW, Spayne JA (1985) Studies of the kallikrein-kinin system and prostaglandins in epithelial ion transport. Soc Gen Physiol Ser 39:121–133

    PubMed  CAS  Google Scholar 

  25. Rao RK, Levenson S, Fang SN, Hruby VJ, Yamamura HI, Porreca F (1994) Characterization of SNF 9007, a novel cholecystokinin/opoid ligand in mouse ileum in vitro: evidence for involvement of cholecystokinin A and cholecystokinin B receptors in regulation of ion transport. J Pharmacol Exp Ther 268:1003–1009

    PubMed  CAS  Google Scholar 

  26. Madsen KL, Tavernini MM, Yachimec C, Mendrick DL, Alfonso PJ, Buergin M, Olsen HS, Antonaccio MJ, Thomson AB, Fedorak RN (1998) Stanniocalcin: a novel protein regulating calcium and phosphate transport across mammalian intestine. Am J Physiol 274:G96–G102

    PubMed  CAS  Google Scholar 

  27. Emery PT, Higgs NB, Warhurst AC, Carlson GL, Warhurst G (2002) Anti-secretory properties of non-peptide somatostatin receptor agonists in isolated rat colon: luminal activity and possible interaction with P-glycoprotein. Br J Pharmacol 135:1443–1448. doi:10.1038/sj.bjp.0704614

    Article  PubMed  CAS  Google Scholar 

  28. Angelow S, Kim KJ, Yu AS (2006) Claudin-8 modulates paracellular permeability to acidic and basic ions in MDCK II cells. J Physiol 571:15–26. doi:10.1113/jphysiol.2005.099135

    Article  PubMed  CAS  Google Scholar 

  29. Yu AS, Enck AH, Lencer WI, Schneeberger EE (2003) Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation. J Biol Chem 278:17350–17359. doi:10.1074/jbc.M213286200

    Article  PubMed  CAS  Google Scholar 

  30. Bushinsky DA, Smith SB, Gavrilov KL, Gavrilov LF, Li J, Levi-Setti R (2003) Chronic acidosis-induced alteration in bone bicarbonate and phosphate. Am J Physiol Ren Physiol 285:F532–F539

    Google Scholar 

  31. Borowitz SM, Said HM, Ghishan FK (1986) The effects of metabolic acidosis on jejunal phosphate and glucose transport in weanling rats. Pediatr Res 20:763–767. doi:10.1203/00006450-198608000-00013

    Article  PubMed  CAS  Google Scholar 

  32. Kunzelmann K, Mall M (2002) Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev 82:245–289

    PubMed  CAS  Google Scholar 

  33. McDaniel SS, Platoshyn O, Yu Y, Sweeney M, Miriel VA, Golovina VA, Krick S, Lapp BR, Wang JY, Yuan JX (2001) Anorexic effect of K+ channel blockade in mesenteric arterial smooth muscle and intestinal epithelial cells. J Appl Physiol 91:2322–2333

    PubMed  CAS  Google Scholar 

  34. Morgan EL, Mace OJ, Affleck J, Kellett GL (2007) Apical GLUT2 and Cav1.3: regulation of rat intestinal glucose and calcium absorption. J Physiol 580:593–604. doi:10.1113/jphysiol.2006.124768

    Article  PubMed  CAS  Google Scholar 

  35. Pento JT, Johnson ME (1983) The influence of verapamil on calcium transport and uptake in segments of rat intestine. Pharmacology 27:343–349. doi:10.1159/000137890

    Article  PubMed  CAS  Google Scholar 

  36. Walling MW, Brasitus TA, Kimberg DV (1977) Effects of calcitonin and substance P on the transport of Ca, Na and Cl across rat ileum in vitro. Gastroenterology 73:89–94

    PubMed  CAS  Google Scholar 

  37. Nemere I, Norman AW (1986) Parathyroid hormone stimulates calcium transport in perfused duodena from normal chicks: comparison with the rapid (transcaltachic) effect of 1,25-dihydroxyvitamin D3. Endocrinology 119:1406–1408

    Article  PubMed  CAS  Google Scholar 

  38. Lucioni A, Womack C, Musch MW, Rocha FL, Bookstein C, Chang EB (2002) Metabolic acidosis in rats increases intestinal NHE2 and NHE3 expression and function. Am J Physiol Gastrointest Liver Physiol 283:G51–G56

    PubMed  CAS  Google Scholar 

  39. Nakanishi T, Kekuda R, Fei YJ, Hatanaka T, Sugawara M, Martindale RG, Leibach FH, Prasad PD, Ganapathy V (2001) Cloning and functional characterization of a new subtype of the amino acid transport system N. Am J Physiol Cell Physiol 281:C1757–C1768

    PubMed  CAS  Google Scholar 

  40. Reimann F, Williams L, da Silva Xavier G, Rutter GA, Gribble FM (2004) Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia 47:1592–1601. doi:10.1007/s00125-004-1498-0

    Article  PubMed  CAS  Google Scholar 

  41. Schrock H, Goldstein L (1981) Interorgan relationships for glutamine metabolism in normal and acidotic rats. Am J Physiol 240:E519–E525

    PubMed  CAS  Google Scholar 

  42. Yang H, Söderholm JD, Larsson J, Permert J, Lindgren J, Wirén M (2000) Bidirectional supply of glutamine maintains enterocyte ATP content in the in vitro Ussing chamber model. Int J Colorectal Dis 15:291–296. doi:10.1007/s003840000258

    Article  PubMed  CAS  Google Scholar 

  43. Kozar RA, Schultz SG, Bick RJ, Poindexter BJ, DeSoignie R, Moore FA (2004) Enteral glutamine but not alanine maintains small bowel barrier function after ischemia/reperfusion injury in rats. Shock 21:433–437. doi:10.1097/00024382-200405000-00006

    Article  PubMed  CAS  Google Scholar 

  44. Bröer A, Tietze N, Kowalczuk S, Chubb S, Munzinger M, Bak LK, Bröer S (2006) The orphan transporter v7-3 (slc6a15) is a Na+-dependent neutral amino acid transporter (B0AT2). Biochem J 393:421–430. doi:10.1042/BJ20051273

    Article  PubMed  CAS  Google Scholar 

  45. Bröer S (2006) The SLC6 orphans are forming a family of amino acid transporters. Neurochem Int 48:559–567

    PubMed  Google Scholar 

  46. Matsuzaki T, Tajika Y, Ablimit A, Aoki T, Hagiwara H, Takata K (2004) Aquaporins in the digestive system. Med Electron Microsc 37:71–80. doi:10.1007/s00795-004-0246-3

    Article  PubMed  CAS  Google Scholar 

  47. Tritto S, Gastaldi G, Zelenin S, Grazioli M, Orsenigo MN, Ventura U, Laforenza U, Zelenina M (2007) Osmotic water permeability of rat intestinal brush border membrane vesicles: involvement of aquaporin-7 and aquaporin-8 and effect of metal ions. Biochem Cell Biol 85:675–684. doi:10.1139/O07-142

    Article  PubMed  CAS  Google Scholar 

  48. Sato Y, Hanai H, Nogaki A, Hirasawa K, Kaneko E, Hayashi H, Suzuki Y (1999) Role of the vasopressin V1 receptor in regulating the epithelial functions of the guinea pig distal colon. Am J Physiol 277:G819–G828

    PubMed  CAS  Google Scholar 

  49. Chodobski A, Loh YP, Corsetti S, Szmydynger-Chodobska J, Johanson CE, Lim YP, Monfils PR (1997) The presence of arginine vasopressin and its mRNA in rat choroid plexus epithelium. Brain Res Mol Brain Res 48:67–72. doi:10.1016/S0169-328X(97)00079-X

    Article  PubMed  CAS  Google Scholar 

  50. Ménard D, Corriveau L, Beaulieu JF (1999) Insulin modulates cellular proliferation in developing human jejunum and colon. Biol Neonate 75:143–151. doi:10.1159/000014090

    Article  PubMed  Google Scholar 

  51. Toback FG, Walsh-Reitz MM, Musch MW, Chang EB, Del Valle J, Ren H, Huang E, Martin TE (2003) Peptide fragments of AMP-18, a novel secreted gastric antrum mucosal protein, are mitogenic and motogenic. Am J Physiol Gastrointest Liver Physiol 285:G344–G353

    PubMed  CAS  Google Scholar 

  52. Bossenmeyer-Pourié C, Kannan R, Ribieras S, Wendling C, Stoll I, Thim L, Tomasetto C, Rio MC (2002) The trefoil factor 1 participates in gastrointestinal cell differentiation by delaying G1-S phase transition and reducing apoptosis. J Cell Biol 157:761–770. doi:10.1083/jcb200108056

    Article  PubMed  CAS  Google Scholar 

  53. Yang SK, Eckmann L, Panja A, Kagnoff MF (1997) Differential and regulated expression of C-X-C, C-C, and C-chemokines by human colon epithelial cells. Gastroenterology 113:1214–1223. doi:10.1053/gast.1997.v113.pm9322516

    Article  PubMed  CAS  Google Scholar 

  54. Sonoyama K, Rutatip S, Kasai T (2000) Gene expression of activin, activin receptors, and follistatin in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 278:G89–G97

    PubMed  CAS  Google Scholar 

  55. Rollwagen FM, Madhavan S, Singh A, Li YY, Wolcott K, Maheshwari R (2006) IL-6 protects enterocytes from hypoxia-induced apoptosis by induction of bcl-2 mRNA and reduction of fas mRNA. Biochem Biophys Res Commun 347:1094–1098. doi:10.1016/j.bbrc.2006.07.016

    Article  PubMed  CAS  Google Scholar 

  56. Iizuka M, Sasaki K, Hirai Y, Shindo K, Konno S, Itou H, Ohshima S, Horie Y, Watanabe S (2007) Morphogenic protein epimorphin protects intestinal epithelial cells from oxidative stress by the activation of EGF receptor and MEK/ERK, PI3 kinase/Akt signals. Am J Physiol Gastrointest Liver Physiol 292:G39–G52. doi:10.1152/ajpgi.00181.2006

    Article  PubMed  CAS  Google Scholar 

  57. Mueller M, Atanasov A, Cima I, Corazza N, Schoonjans K, Brunner T (2007) Differential regulation of glucocorticoid synthesis in murine intestinal epithelial versus adrenocortical cell lines. Endocrinology 148:1445–1453. doi:10.1210/en.2006-0591

    Article  PubMed  CAS  Google Scholar 

  58. Nishimura M, Naito S (2006) Tissue-specific mRNA expression profiles of human phase I metabolizing enzymes except for cytochrome P450 and phase II metabolizing enzymes. Drug Metab Pharmacokinet 21:357–374. doi:10.2133/dmpk.21.357

    Article  PubMed  CAS  Google Scholar 

  59. Hernandez RE, Putzke AP, Myers JP, Margaretha L, Moens CB (2007) Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development. Development 134:177–187. doi:10.1242/dev.02706

    Article  PubMed  CAS  Google Scholar 

  60. Martignoni M, Groothuis G, de Kanter R (2006) Comparison of mouse and rat cytochrome P450-mediated metabolism in liver and intestine. Drug Metab Dispos 34:1047–1054

    PubMed  CAS  Google Scholar 

  61. Costa LG, Vitalone A, Cole TB, Furlong CE (2005) Modulation of paraoxonase (PON1) activity. Biochem Pharmacol 69:541–550. doi:10.1016/j.bcp.2004.08.027

    Article  PubMed  CAS  Google Scholar 

  62. Gonzalez PK, Doctrow SR, Malfroy B, Fink MP (1997) Role of oxidant stress and iron delocalization in acidosis-induced intestinal epithelial hyperpermeability. Shock 8:108–114. doi:10.1097/00024382-199708000-00008

    Article  PubMed  CAS  Google Scholar 

  63. Oien KA, McGregor F, Butler S, Ferrier RK, Downie I, Bryce S, Burns S, Keith WN (2004) Gastrokine 1 is abundantly and specifically expressed in superficial gastric epithelium, down-regulated in gastric carcinoma, and shows high evolutionary conservation. J Pathol 203:789–797. doi:10.1002/path.1583

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kukiat Tudpor for the excellent technical assistance. This research was supported by grants from the Thailand Research Fund (MRG4980003 and RSA5180001 to N. Charoenphandhu and RTA5080008 to N. Krishnamra) and the Strategic Consortia for Capacity Building of University Faculties and Staff, Commission on Higher Education, Thailand (to K. Wongdee).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narattaphol Charoenphandhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 (PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wongdee, K., Teerapornpuntakit, J., Riengrojpitak, S. et al. Gene expression profile of duodenal epithelial cells in response to chronic metabolic acidosis. Mol Cell Biochem 321, 173–188 (2009). https://doi.org/10.1007/s11010-008-9931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9931-1

Keywords

Navigation