Skip to main content

Advertisement

Log in

Knockdown endogenous CypA with siRNA in U2OS cells results in disruption of F-actin structure and alters tumor phenotype

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cyclophilin A (CypA) was originally identified as a cytosolic protein possessing peptidyl–prolyl isomerase activity. CypA has been shown to play a pivotal role in the immune response, but little is known about other molecular mechanisms of CypA-mediated biologic events. In our present study, we demonstrate that knockdown CypA expression using RNAi in U2OS cells resulted in disruption of the F-actin structure, as well as decreased anchorage-independent growth, proliferation, and migration. Wild-type U2OS cells treated with cyclosporine A (CsA), a peptidyl–prolyl isomerase inhibitor, displayed the same phenotype as knockdown CypA cells, suggesting that the isomerase activity of CypA is required to maintain a normal phenotype. In vitro and in vivo binding assays revealed that CypA binds to N-WASP, which functions in the nucleation of actin via the Arp2/3 complex. Pulse-chase labeling study indicated an enhanced degradation of N-WASP in cell lacking CypA, suggesting that CypA is required for stabilizing N-WASP to form a N-WASP/Arp2/3 complex for the nucleation/initiation of F-actin polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporine A. Science 226:544–547. doi:10.1126/science.6238408

    Article  CAS  PubMed  Google Scholar 

  2. Lang K, Schmid FX, Fischer G (1987) Catalysis of protein folding by prolyl isomerase. Nature 329:268–270. doi:10.1038/329268a0

    Article  CAS  PubMed  Google Scholar 

  3. Brazin KN, Mallis RJ, Fulton DB, Andreotti AH (2002) Regulation of the tyrosine kinase Itk by the peptidyl–prolyl isomerase cyclophilin A. Proc Natl Acad Sci USA 99:1899–1904. doi:10.1073/pnas.042529199

    Article  CAS  PubMed  Google Scholar 

  4. Bruns K, Fossen T, Wray V, Henklein P, Tessmer U, Schubert U (2003) Structural characterization of the HIV-1 Vpr N terminus: evidence of cis/trans-proline isomerism. J Biol Chem 278:43188–43201. doi:10.1074/jbc.M305413200

    Article  CAS  PubMed  Google Scholar 

  5. Nadeau K, Das A, Walsh CT (1993) HSP90 chaperonins possess ATPase activity, bind heat shock transcription factors, peptidyl–prolyl isomerases. J Biol Chem 268:1479–1487

    CAS  PubMed  Google Scholar 

  6. Luban J (1996) Absconding with the chaperone: essential cyclophilin-Gag interaction in HIV-1 virions. Cell 87:1157–1159. doi:10.1016/S0092-8674(00)81811-5

    Article  CAS  PubMed  Google Scholar 

  7. Reddy PA, Atreya CD (1999) Identification of simian cyclophilin A as a calreticulin-binding protein in yeast two-hybrid screen and demonstration of cyclophilin A interaction with calreticulin. Int J Biol Macromol 25:345–351. doi:10.1016/S0141-8130(99)00053-7

    Article  CAS  PubMed  Google Scholar 

  8. Lu Y-C, Song J, Cho H-Y, Fan G, Yokoyama KK, Chiu R (2006) Cyclophilin A protects Peg3 from hypermethylation and inactive histone modification. J Biol Chem 281:39081–39087. doi:10.1074/jbc.M606687200

    Article  CAS  PubMed  Google Scholar 

  9. Piotukh K, Gu W, Kofler M, Labudde D, Helms V, Freund C (2005) Cyclophilin A binds to linear peptide motifs containing a consensus that is present in many human proteins. J Biol Chem 280:23668–23674. doi:10.1074/jbc.M503405200

    Article  CAS  PubMed  Google Scholar 

  10. Campa MJ, Wang MZ, Howard B, Fitzgerald MC, Patz EF Jr (2003) Protein expression profiling identifies macrophage migration inhibitory factor and cyclophilin A as potential molecular targets in non-small cell lung cancer. Cancer Res 63:1652–1656

    CAS  PubMed  Google Scholar 

  11. Shen J, Person MD, Zhu J, Abbruzzese JL, Li D (2004) Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res 64:9018–9026. doi:10.1158/0008-5472.CAN-04-3262

    Article  CAS  PubMed  Google Scholar 

  12. Lim SO, Park SJ, Kim W, Park SG, Kim HJ, Kim YI et al (2002) Proteome analysis of hepatocellular carcinoma. Biochem Biophys Res Commun 291:1031–1037. doi:10.1006/bbrc.2002.6547

    Article  CAS  PubMed  Google Scholar 

  13. Chen J, He QY, Yuen AP, Chiu JF (2004) Proteomics of buccal squamous cell carcinoma: the involvement of multiple pathways in tumorigenesis. Proteomics 4:2465–2475. doi:10.1002/pmic.200300762

    Article  CAS  PubMed  Google Scholar 

  14. Rey O, Baluda MA, Park NH (1999) Differential gene expression in neoplastic and human papillomavirus-immortalized oral keratinocytes. Oncogene 18:827–831. doi:10.1038/sj.onc.1202328

    Article  CAS  PubMed  Google Scholar 

  15. Li Z, Zhao X, Bai S, Wang Z, Chen L, Wei Y, Huang C (2008) Proteomic identification of cyclophilin A as a potential prognostic factor and therapeutic target in endometrial carcinoma. Mol Cell Proteomics. doi:10.1074/mcp.M700544-MCP200

  16. Buda A, Pignatelli M (2004) Cytoskeletal network in colon cancer: from genes to clinical application. Int J Biochem Cell Biol 36:759–765. doi:10.1016/j.biocel.2003.09.004

    Article  CAS  PubMed  Google Scholar 

  17. Erickson JW, Cerione RA (2001) Multiple roles for Cdc42 in cell regulation. Curr Opin Cell Biol 13:153–157. doi:10.1016/S0955-0674(00)00192-7

    Article  CAS  PubMed  Google Scholar 

  18. Higgs HN, Pollard TD (2001) Regulation of actin filament network formation through Arp2/3 complex: activation by a diverse array of proteins. Annu Rev Biochem 70:649–676. doi:10.1146/annurev.biochem.70.1.649

    Article  CAS  PubMed  Google Scholar 

  19. Ma L, Rohatgi R, Kirschner MW (1998) The Arp2/3 complex mediates actin polymerization induced by the small GTP-binding protein Cdc42. Proc Natl Acad Sci USA 95:15362–15367. doi:10.1073/pnas.95.26.15362

    Article  CAS  PubMed  Google Scholar 

  20. Hašková V, Rozprimova L, Hasek J, Jelinkova M (1994) Immunolocalization of cyclophilin in normal and cyclosporine A-treated human lymphocytes. Immunol Lett 41:267–272. doi:10.1016/0165-2478(94)90144-9

    Article  PubMed  Google Scholar 

  21. Kolcz J, Drukala J, Jurkiewicz A, Pfitzner R, Garlicki M, Czyz J et al (1999) Effects of cyclosporine A on contractile activity and cytoskeleton in chick embryo cardiomyocytes. Biochem Cell Biol 77:133–140. doi:10.1139/bcb-77-2-133

    Article  CAS  PubMed  Google Scholar 

  22. Song J, Lu Y-C, Yokoyama K, Rossi J, Chiu R (2004) Cyclophilin A is required for retinoic acid-induced neuronal differentiation in P19 cells. J Biol Chem 279:24414–24419. doi:10.1074/jbc.M311406200

    Article  CAS  PubMed  Google Scholar 

  23. Egile C, Loisel TP, Laurent V, Li R, Pantaloni D, Sansonetti PJ et al (1999) Activation of the Cdc42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell Biol 146:1319–1332. doi:10.1083/jcb.146.6.1319

    Article  CAS  PubMed  Google Scholar 

  24. Rohatgi R, Nollau P, Ho HY, Kirschner MW, Mayer BJ (2001) Nck and phosphatidylinositol 4, 5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J Biol Chem 276:26448–26452. doi:10.1074/jbc.M103856200

    Article  CAS  PubMed  Google Scholar 

  25. Howard B, Furumai R, Campa MJ, Rabbani ZN, Vujaskovic Z, Wang MZ, Patz EF Jr (2005) Stable RNA interference-mediated suppression of cyclophilin A diminishes non-small-cell lung tumor growth in vivo. Cancer Res 65:8853–8860. doi:10.1158/0008-5472.CAN-05-1219

    Article  CAS  PubMed  Google Scholar 

  26. Ou WB, Luo W, Park YD, Zhou HM (2001) Chaperone-like activity of peptidyl–prolyl cis-trans isomerase during creatine kinase refolding. Protein Sci 10:2346–2353. doi:10.1110/ps.23301

    Article  CAS  PubMed  Google Scholar 

  27. Park SJ, Suetsugu S, Takenawa T (2005) Interaction of HSP90 to N-WASP leads to activation and protection from proteasome-dependent degradation. EMBO J 24:1557–1570. doi:10.1038/sj.emboj.7600586

    Article  CAS  PubMed  Google Scholar 

  28. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357. doi:10.1016/S0092-8674(00)81279-9

    Article  CAS  PubMed  Google Scholar 

  29. Li M, Zhai Q, Bharadwaj U, Wang H, Li F, Fisher WE, Chen C, Yao Q (2006) Cyclophilin A is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. Cancer 106:2284–2294. doi:10.1002/cncr.21862

    Article  CAS  PubMed  Google Scholar 

  30. Suetsugu S, Miki H, Takenawa T (2001) Identification of another actin-related protein (Arp) 2/3 complex binding site in neural Wiskott–Aldrich syndrome protein (N-WASP) that complements actin polymerization induced by the Arp2/3 complex activating (VCA) domain of N-WASP. J Biol Chem 276:33175–33180. doi:10.1074/jbc.M102866200

    Article  CAS  PubMed  Google Scholar 

  31. Peterson JR, Bickford LC, Morgan D, Kim AS, Ouerfelli O, Kirschne MW et al (2004) Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation. Nat Struct Mol Biol 11:747–755. doi:10.1038/nsmb796

    Article  CAS  PubMed  Google Scholar 

  32. Kowalski JR, Egile C, Gil S, Snapper SB, Li R, Thomas SM (2005) Cortactin regulates cell migration through activation of N-WASP. J Cell Sci 118:79–87. doi:10.1242/jcs.01586

    Article  CAS  PubMed  Google Scholar 

  33. Ho HY, Rohatgi R, Lebensohn AM, Le Ma , Li J, Gygi SP, Kirschner MW (2004) Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell 118:203–216. doi:10.1016/j.cell.2004.06.027

    Article  CAS  PubMed  Google Scholar 

  34. Siliciano JD, Morrow TA, Desiderio SV (1992) Itk, a T-cell-specific tyrosine kinase gene inducible by interleukin 2. Proc Natl Acad Sci USA 89:11194–11198. doi:10.1073/pnas.89.23.11194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Matthew J. Schibler of the UCLA Brain Research Institute for assistance with confocal microscopy. We are also grateful to Uma Dandekar, Assistant Director, Sequencing Core and Martin Phillips, Manager, Biochemistry Instrumentation Facility for their help with this study. This work was supported by a grant CA066746 to RC. Colonya C. Calhoun was supported by the NIH Training Grant #T32 DE07296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Chiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calhoun, C.C., Lu, YC., Song, J. et al. Knockdown endogenous CypA with siRNA in U2OS cells results in disruption of F-actin structure and alters tumor phenotype. Mol Cell Biochem 320, 35–43 (2009). https://doi.org/10.1007/s11010-008-9896-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9896-0

Keywords

Navigation