Skip to main content
Log in

The Src tyrosine kinase pathway regulates thecal CYP17 expression and androstenedione secretion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In order to evaluate the role of Src tyrosine kinase in thecal cell steroidogenesis, a pharmacological approach was utilized by treating enriched populations of mouse ovarian theca-interstitial cells in vitro with a direct Src kinase inhibitor, PP2. Inhibition of Src with PP2 increased both basal and forskolin-stimulated androstenedione secretion, and increased cytochrome P450 17-alpha hydroxylase-lyase (CYP17) promoter activity and steady state mRNA. PP2 did not change thecal levels of StAR mRNA. Inhibition of mitogen-activated protein kinase kinase, a downstream regulator of Src activity, using PD98059 also increased forskolin-stimulated secretion of androstenedione above forskolin alone, but had no effect on basal secretion of androstenedione. Src inhibition increased mitogen-activated protein kinase phosphatase-1 protein and decreased phosphorylation of SF-1, which correlated with increased CYP17 promoter activity and mRNA levels. These results implicate Src tyrosine kinase in the regulation of CYP17 and thecal androgen secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kypta R, Goldberg Y, Ulug E et al (1990) Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell 62:481–492

    Google Scholar 

  2. Luttrell D, Luttrell L, Parsons S (1988) Augmented mitogenic response to FGF in murine fibroblasts that overexpress pp60 c-src. Mol Cell Biol 8:497–501

    Google Scholar 

  3. Kremer N, D’Arcangelo G, Thomas S et al (1991) Signal transduction by NGF and FGF in PC12 cells requires a sequence of src and ras actions. J Cell Biol 1015:809–819

    Google Scholar 

  4. Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609

    Google Scholar 

  5. Chaturvedi G, Arai K, Limback D et al (2004) Src tyrosine kinase regulates CYP17 expression and androstenedione secretion in theca-enriched mouse ovarian cells. Endocrine 25(2):147–154

    Google Scholar 

  6. Taylor C, Limback D, Terranova P (1996) Src tyrosine kinase activity is related to luteinizing hormone responsiveness: genetic manipulations using mouse MA10 Leydig cells. Endocrinology 137(12):5735–5738. doi:10.1210/en.137.12.5735

    Article  PubMed  CAS  Google Scholar 

  7. Taylor C, Terranova P (1996) Lipopolysaccharide inhibits in vitro luteinizing hormone-stimulated rat ovarian granulosa cell estradiol but not progesterone secretion. Biol Reprod 54:1390–1396

    Article  PubMed  CAS  Google Scholar 

  8. Taylor CC, Limback DL, Terranova PF (1997) Src tyrosine kinase activity in rat thecal-interstitial cells and mouse TM3 leydig cells is positively associated with cAMP-specific phosphodiesterase activity. Mol Cell Endocrinol 126(1):92–100. doi:10.1016/S0303-7207(96)03975-5

    Article  Google Scholar 

  9. Taylor CC, Terranova PF (1995) Lipopolysaccharide inhibits rat ovarian thecal-interstitial cell steroid secretion in vitro. Endocrinology 146:5527–5532

    Article  Google Scholar 

  10. Teixeira J, Fynn-Thompson E, Payne AH et al (1999) Mullerian-inhibiting substance regulates androgen synthesis at the transcriptional level. Endocrinology 140(10):4732–4738. doi:10.1210/en.140.10.4732

    Article  PubMed  CAS  Google Scholar 

  11. Neckers L, Schulte TW, Mimnaugh E (1999) Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Invest New Drugs 17(4):361–373. doi:10.1023/A:1006382320697

    Article  PubMed  CAS  Google Scholar 

  12. Schulte TW, Blagosklonny MV, Ingui C et al (1995) Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem 270(41):24585–24588. doi:10.1074/jbc.270.41.24585

    Article  PubMed  CAS  Google Scholar 

  13. Taniguchi F, Harada T, Deura I et al (2004) Hepatocyte growth factor promotes cell proliferation and inhibits progesterone secretion via PKA and MAPK pathways in a human granulosa cell line. Mol Reprod Dev 68(3):335–344. doi:10.1002/mrd.20076

    Article  PubMed  CAS  Google Scholar 

  14. Wu CH, Chen YF, Wang JY et al (2002) Mutant K-ras oncogene regulates steroidogenesis of normal human adrenocortical cells by the RAF-MEK-MAPK pathway. Br J Cancer 87(9):1000–1005. doi:10.1038/sj.bjc.6600589

    Article  PubMed  CAS  Google Scholar 

  15. Blake RA, Broome MA, Liu X et al (2000) SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol Cell Biol 20(23):9018–9027. doi:10.1128/MCB.20.23.9018-9027.2000

    Article  PubMed  CAS  Google Scholar 

  16. Sirianni R, Carr BR, Ando S et al (2003) Inhibition of Src tyrosine kinase stimulates adrenal androgen production. J Mol Endocrinol 30(3):287–299. doi:10.1677/jme.0.0300287

    Article  PubMed  CAS  Google Scholar 

  17. Sirianni R, Sirianni R, Carr B et al (2001) A role for src tyrosine kinase in regulating adrenal aldosterone production. J Mol Endocrinol 26(3):207–215. doi:10.1677/jme.0.0260207

    Article  PubMed  CAS  Google Scholar 

  18. Akhtar MK, Kelly SL, Kaderbhai MA (2005) Cytochrome b(5) modulation of 17{alpha} hydroxylase and 17-20 lyase (CYP17) activities in steroidogenesis. J Endocrinol 187(2):267–274. doi:10.1677/joe.1.06375

    Article  PubMed  CAS  Google Scholar 

  19. Sewer MB, Waterman MR (2003) ACTH modulation of transcription factors responsible for steroid hydroxylase gene expression in the adrenal cortex. Microsc Res Tech 61(3):300–307. doi:10.1002/jemt.10339

    Article  PubMed  CAS  Google Scholar 

  20. Sewer MB, Waterman MR (2002) Transcriptional complexes at the CYP17 CRS. Endocr Res 28(4):551–558. doi:10.1081/ERC-120016840

    Article  PubMed  CAS  Google Scholar 

  21. Sewer MB, Waterman MR (2003) CAMP-dependent protein kinase enhances CYP17 transcription via MKP-1 activation in H295R human adrenocortical cells. J Biol Chem 278(10):8106–8111. doi:10.1074/jbc.M210264200

    Article  PubMed  CAS  Google Scholar 

  22. Nelson-Degrave VL, Wickenheisser JK, Hendricks KL et al (2005) Alterations in mitogen-activated protein kinase kinase and extracellular regulated kinase signaling in theca cells contribute to excessive androgen production in polycystic ovary syndrome. Mol Endocrinol 19(2):379–390. doi:10.1210/me.2004-0178

    Article  PubMed  CAS  Google Scholar 

  23. Hiroi H, Christenson LK, Chang L et al (2004) Temporal and spatial changes in transcription factor binding and histone modifications at the steroidogenic acute regulatory protein (stAR) locus associated with stAR transcription. Mol Endocrinol 18(4):791–806. doi:10.1210/me.2003-0305

    Article  PubMed  CAS  Google Scholar 

  24. Youngblood GL, Payne AH (1992) Isolation and characterization of the mouse P450 17 alpha-hydroxylase/C17-20-lyase gene (Cyp17): transcriptional regulation of the gene by cyclic adenosine 3′, 5′-monophosphate in MA-10 Leydig cells. Mol Endocrinol 6(6):927–934. doi:10.1210/me.6.6.927

    Article  PubMed  CAS  Google Scholar 

  25. Sambrook J, Fritsch E, Maniatis T (1989) Detection and analysis of proteins expressed from cloned genes. In: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 18.47–18.75

  26. Aesøy R, Mellgren G, Morohashi K et al (2002) Activation of cAMP-dependent protein kinase increases the protein level of steroidogenic factor-1. Endocrinology 143(1):295–303

    Article  PubMed  Google Scholar 

  27. Sugawara T, Saito M, Fujimoto S (2000) Sp1 and SF-1 interact and cooperate in the regulation of human steroidogenic acute regulatory protein gene expression 1. Endocrinology 141(8):2895–2903

    Article  PubMed  CAS  Google Scholar 

  28. Terranova PF, Garza F (1983) Relationship between the preovulatory luteinizing hormone (LH) surge and androstenedione synthesis of preantral follicles in the cyclic hamster: detection by in vitro responses to LH. Biol Reprod 29:630–636

    Article  PubMed  CAS  Google Scholar 

  29. Tajima K, Yoshii K, Fukuda S et al (2005) Luteinizing hormone-induced extracellular-signal regulated kinase activation differently modulates progesterone and androstenedione production in bovine theca cells. Endocrinology 146(7):2903–2910. doi:10.1210/en.2005-0093

    Article  PubMed  CAS  Google Scholar 

  30. Wickenheisser JK, Quinn PG, Nelson VL et al (2000) Differential activity of the cytochrome P450 17alpha-hydroxylase and steroidogenic acute regulatory protein gene promoters in normal and polycystic ovary syndrome theca cells. J Clin Endocrinol Metab 85(6):2304–2311. doi:10.1210/jc.85.6.2304

    Article  PubMed  CAS  Google Scholar 

  31. Taylor CC (2000) Platelet-derived growth factor activates porcine thecal cell phosphatidylinositol-3-kinase-Akt/PKB and ras-extracellular signal-regulated kinase-1/2 kinase signaling pathways via the platelet-derived growth factor-beta receptor. Endocrinology 141(4):1545–1553. doi:10.1210/en.141.4.1545

    Article  PubMed  CAS  Google Scholar 

  32. Bromann PA, Korkaya H, Courtneidge SA (2004) The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 23(48):7957–7968. doi:10.1038/sj.onc.1208079

    Article  PubMed  CAS  Google Scholar 

  33. Ishizawar R, Parsons SJ (2004) c-Src and cooperating partners in human cancer. Cancer Cell 6(3):209–214. doi:10.1016/j.ccr.2004.09.001

    Article  PubMed  CAS  Google Scholar 

  34. Martinat N, Crepieux P, Reiter E et al (2005) Extracellular signal-regulated kinases (ERK) 1, 2 are required for luteinizing hormone (LH)-induced steroidogenesis in primary Leydig cells and control steroidogenic acute regulatory (StAR) expression. Reprod Nutr Dev 45(1):101–108. doi:10.1051/rnd:2005007

    Article  PubMed  CAS  Google Scholar 

  35. Tai CJ, Kang SK, Choi KC et al (2001) Role of mitogen-activated protein kinase in prostaglandin f(2alpha) action in human granulosa-luteal cells. J Clin Endocrinol Metab 86(1):375–380. doi:10.1210/jc.86.1.375

    Article  PubMed  CAS  Google Scholar 

  36. Taylor CC (2002) Src tyrosine kinase-induced loss of luteinizing hormone responsiveness is via a Ras-dependent, phosphatidylinositol-3-kinase independent pathway. Biol Reprod 67(3):789–794. doi:10.1095/biolreprod.101.000976

    Article  PubMed  CAS  Google Scholar 

  37. Davis ME, Cai H, Drummond GR et al (2001) Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circ Res 89(11):1073–1080. doi:10.1161/hh2301.100806

    Article  PubMed  CAS  Google Scholar 

  38. Bromann PA, Korkaya H, Webb CP et al (2005) Platelet-derived growth factor stimulates Src-dependent mRNA stabilization of specific early genes in fibroblasts. J Biol Chem 280(11):10253–10263. doi:10.1074/jbc.M413806200

    Article  PubMed  CAS  Google Scholar 

  39. Biason-Lauber A, Kempken B, Werder E et al (2000) 17-Hydroxylase/17,20-lyase deficiency as a model to study enzymatic activity regulation: role of phosphorylation. J Clin Endocrinol Metab 85(3):1226–1231. doi:10.1210/jc.85.3.1226

    Article  PubMed  CAS  Google Scholar 

  40. Zhang L-H, Rodriguez H, Ohno S et al (1995) Serine phosphorylation of human P450c17 increases 17,20-lyase activity: implications for adrenarche and polycystic ovary syndrome. Proc Natl Acad Sci USA 92:10619–10623

    Article  PubMed  CAS  Google Scholar 

  41. Yanagibashi K, Hall PF (1986) Role of electron transport in the regulation of the lyase activity of C21 side-chain cleavage P-450 from porcine adrenal and testicular microsomes. J Biol Chem 261(18):8429–8433

    PubMed  CAS  Google Scholar 

  42. Beshay VE, Havelock JC, Sirianni R et al (2007) The mechanism for protein kinase C inhibition of androgen production and 17alpha-hydroxylase expression in a theca cell tumor model. J Clin Endocrinol Metab 92(12):4802–4809. doi:10.1210/jc.2007-1394

    Article  PubMed  CAS  Google Scholar 

  43. Fresno VJA, Cáceres MA, Silva A et al (2001) Src family kinases are required for prolactin induction of cell proliferation. Mol Biol Cell 12(7):2171–2183

    Google Scholar 

  44. Touyz RM, He G, Wu XH et al (2001) Src is an important mediator of extracellular signal-regulated kinase 1/2-dependent growth signaling by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients. Hypertension 38(1):56–64

    PubMed  CAS  Google Scholar 

  45. Givens CR, Zhang P, Bair SR et al (1994) Transcriptional regulation of rat cytochrome P450c17 expression in mouse Leydig MA-10 and adrenal Y-1 cells: identification of a single protein that mediates both basal and cAMP-induced activities. DNA Cell Biol 13(11):1087–1098

    Article  PubMed  CAS  Google Scholar 

  46. Lynch JP, Lala DS, Peluso JJ et al (1993) Steroidogenic factor 1, an orphan nuclear receptor, regulates the expression of the rat aromatase gene in gonadal tissues. Mol Endocrinol 7(6):776–786. doi:10.1210/me.7.6.776

    Article  PubMed  CAS  Google Scholar 

  47. Zhang P, Mellon SH (1996) The orphan nuclear receptor steroidogenic factor-1 regulates the cyclic adenosine 3′, 5′-monophosphate-mediated transcriptional activation of rat cytochrome P450c17 (17a-hydroxylase/c17-20 lyase). Mol Endocrinol 10:147–158

    Article  PubMed  CAS  Google Scholar 

  48. Sewer MB, Nguyen VQ, Huang CJ et al (2002) Transcriptional activation of human CYP17 in H295R adrenocortical cells depends on complex formation among p54(nrb)/NonO, protein-associated splicing factor, and SF-1, a complex that also participates in repression of transcription. Endocrinology 143(4):1280–1290. doi:10.1210/en.143.4.1280

    Article  PubMed  CAS  Google Scholar 

  49. Sewer MB, Waterman MR (2002) Adrenocorticotropin/cyclic adenosine 3′, 5′-monophosphate-mediated transcription of the human CYP17 gene in the adrenal cortex is dependent on phosphatase activity. Endocrinology 143(5):1769–1777. doi:10.1210/en.143.5.1769

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a U54 Center grant from the National Institute of Child Health and Human Development (HD 33994), which is a Specialized Cooperative Center Program in Reproduction Research (PFT), a grant from the National Center for Research Resources (RR-16475) to support a Kansas IDeA Network of Biomedical Research Excellence, and a KUMC Biomedical Research Training Fellowship (GC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine F. Roby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaturvedi, G., Arai, K., Terranova, P.F. et al. The Src tyrosine kinase pathway regulates thecal CYP17 expression and androstenedione secretion. Mol Cell Biochem 318, 191–200 (2008). https://doi.org/10.1007/s11010-008-9871-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9871-9

Keywords

Navigation