Skip to main content

Advertisement

Log in

The emerging CK2 interactome: insights into the regulation and functions of CK2

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Protein kinase CK2 represents a small family of protein serine/threonine kinases implicated in a variety of biological processes including events relating to cell proliferation and survival. Notably, CK2 displays oncogenic activity in mice and exhibits altered expression in several types of cancer. Accordingly, a detailed understanding of the cellular functions of CK2 and elucidation of the mechanisms by which CK2 is regulated in cells is expected to contribute to understanding its role in tumorigenesis with the prospect of novel approaches to therapy. While CK2 has traditionally been viewed as a tetrameric complex composed of two catalytic and two regulatory subunits, mounting evidence suggests that its subunits may have functions independent of tetrameric CK2 complexes. In mammals, as is the case in the budding yeast Saccharomyces cerevisiae, there are two isozymic forms of CK2, adding additional heterogeneity to the CK2 family. Studies in yeast and in human cells demonstrate that the different forms of CK2 interact with a large number of cellular proteins. To reveal new insights regarding the regulation and functions of different forms of CK2, we have examined the emerging interactomes for each of the CK2 subunits. Analysis of these interactomes for both yeast and human CK2 reinforces the view that this family of enzymes participates in a broad spectrum of cellular events. Furthermore, while there is considerable overlap between the interactomes of the individual CK2 subunits, notable differences in each of the individual interactomes provides additional evidence for functional specialization for the individual forms of CK2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cohen P (2000) The regulation of protein function by multisite phosphorylation-a 25 year update. Trends Biochem Sci 25:596–601. doi:10.1016/S0968-0004(00)01712-6

    Article  PubMed  CAS  Google Scholar 

  2. Manning G, Plowman GD, Hunter T, Sudarsanam S (2002) Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27:514–520. doi:10.1016/S0968-0004(02)02179-5

    Article  PubMed  CAS  Google Scholar 

  3. Johnson SA, Hunter T (2005) Kinomics: methods for deciphering the kinome. Nat Methods 2:17–25. doi:10.1038/nmeth731

    Article  PubMed  CAS  Google Scholar 

  4. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368. doi:10.1096/fj.02-0473rev

    Article  PubMed  CAS  Google Scholar 

  5. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15. doi:10.1042/BJ20021469

    Article  PubMed  CAS  Google Scholar 

  6. Olsten ME, Weber JE, Litchfield DW (2005) CK2 interacting proteins: emerging paradigms for CK2 regulation? Mol Cell Biochem 274:115–124. doi:10.1007/s11010-005-3072-6

    Article  PubMed  CAS  Google Scholar 

  7. Litchfield DW, Lüscher B (1993) Casein kinase II in signal transduction and cell cycle regulation. Mol Cell Biochem 127–128:187–199. doi:10.1007/BF01076770

    Article  PubMed  Google Scholar 

  8. Allende JE, Allende CC (1995) Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J 9:313–323

    PubMed  CAS  Google Scholar 

  9. Guerra B, Boldyreff B, Sarno S, Cesaro L, Issinger OG, Pinna LA (1999) CK2: a protein kinase in need of control. Pharmacol Ther 82:303–313. doi:10.1016/S0163-7258(98)00064-3

    Article  PubMed  CAS  Google Scholar 

  10. Ahmed K, Gerber DA, Cochet C (2002) Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol 12:226–230. doi:10.1016/S0962-8924(02)02279-1

    Article  PubMed  CAS  Google Scholar 

  11. Wang G, Ahmad KA, Ahmed K (2006) Role of protein kinase CK2 in the regulation of tumor necrosis factor-related apoptosis inducing ligand-induced apoptosis in prostate cancer cells. Cancer Res 66:2242–2249. doi:10.1158/0008-5472.CAN-05-2772

    Article  PubMed  CAS  Google Scholar 

  12. Yenice S, Davis AT, Goueli SA, Akdas A, Limas C, Ahmed K (1994) Nuclear casein kinase 2 (CK-2) activity in human normal, benign hyperplastic, and cancerous prostate. Prostate 24:11–16. doi:10.1002/pros.2990240105

    Article  PubMed  CAS  Google Scholar 

  13. Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC (2001) Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 20:3247–3257. doi:10.1038/sj.onc.1204411

    Article  PubMed  CAS  Google Scholar 

  14. Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B et al (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126:269–283. doi:10.1016/j.cell.2006.05.041

    Article  PubMed  CAS  Google Scholar 

  15. Daya-Makin M, Sanghera JS, Mogentale T, Lipp M, Parchomchuk J, Hogg J et al (1994) Activation of a tumour-associated protein kinase (p40TAK) and casein kinase II in human squamous cell carcinomas and adenocarcinomas of the lung. Cancer Res 54:2262–2268

    PubMed  CAS  Google Scholar 

  16. Stalter G, Siemer S, Becht E, Ziegler M, Remberger K, Issinger OG (1994) Asymmetric expression of protein kinase CK2 subunits in human kidney tumors. Biochem Biophys Res Commun 202:141–147. doi:10.1006/bbrc.1994.1904

    Article  PubMed  CAS  Google Scholar 

  17. Yu M, Yeh J, Van Waes C (2006) Protein kinase casein kinase 2 mediates inhibitor-kappaB kinase and aberrant nuclear factor-kappaB activation by serum factor(s) in head and neck squamous carcinoma cells. Cancer Res 66:6722–6731. doi:10.1158/0008-5472.CAN-05-3758

    Article  PubMed  CAS  Google Scholar 

  18. Faust RA, Gapany M, Tristani P, Davis A, Adams GL, Ahmed K (1996) Elevated protein kinase CK2 activity in chromatin of head and neck tumors: association with malignant transformation. Cancer Lett 101:31–35. doi:10.1016/0304-3835(96)04110-9

    Article  PubMed  CAS  Google Scholar 

  19. Channavajhala P, Seldin DC (2002) Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene 21:5280–5288. doi:10.1038/sj.onc.1205640

    Article  PubMed  CAS  Google Scholar 

  20. Kelliher MA, Seldin DC, Leder P (1996) Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase II alpha. EMBO J 15:5160–5166

    PubMed  CAS  Google Scholar 

  21. Landesman-Bollag E, Channavajhala PL, Cardiff RD, Seldin DC (1998) p53 deficiency and misexpression of protein kinase CK2alpha collaborate in the development of thymic lymphomas in mice. Oncogene 16:2965–2974. doi:10.1038/sj.onc.1201854

    Article  PubMed  CAS  Google Scholar 

  22. French AC, Luscher B, Litchfield DW (2007) Development of a stabilized form of the regulatory CK2beta subunit that inhibits cell proliferation. J Biol Chem 282:29667–29677. doi:10.1074/jbc.M706457200

    Article  PubMed  CAS  Google Scholar 

  23. Zhang C, Vilk G, Canton DA, Litchfield DW (2002) Phosphorylation regulates the stability of the regulatory CK2beta subunit. Oncogene 21:3754–3764. doi:10.1038/sj.onc.1205467

    Article  PubMed  CAS  Google Scholar 

  24. Litchfield DW, Bosc DG, Canton DA, Saulnier RB, Vilk G, Zhang C (2001) Functional specialization of CK2 isoforms and characterization of isoform-specific binding partners. Mol Cell Biochem 227:21–29. doi:10.1023/A:1013188101465

    Article  PubMed  CAS  Google Scholar 

  25. Glover CV 3rd (1998) On the physiological role of casein kinase II in Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 59:95–133. doi:10.1016/S0079-6603(08)61030-2

    Article  PubMed  CAS  Google Scholar 

  26. Padmanabha R, Chen-Wu JL, Hanna DE, Glover CV (1990) Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol 10:4089–4099

    PubMed  CAS  Google Scholar 

  27. Faust M, Montenarh M (2000) Subcellular localization of protein kinase CK2. A key to its function? Cell Tissue Res 301:329–340. doi:10.1007/s004410000256

    Article  PubMed  CAS  Google Scholar 

  28. Penner CG, Wang Z, Litchfield DW (1997) Expression and localization of epitope-tagged protein kinase CK2. J Cell Biochem 64:525–537. doi:10.1002/(SICI)1097-4644(19970315)64:4≤525::AID-JCB1≥3.0.CO;2-T

    Google Scholar 

  29. Xu X, Toselli PA, Russell LD, Seldin DC (1999) Globozoospermia in mice lacking the casein kinase II alpha’ catalytic subunit. Nat Genet 23:118–121. doi:10.1038/12729

    Article  PubMed  CAS  Google Scholar 

  30. Pinna LA (2002) Protein kinase CK2: a challenge to canons. J Cell Sci 115:3873–3878. doi:10.1242/jcs.00074

    Article  PubMed  CAS  Google Scholar 

  31. Kubinski K, Domanska K, Sajnaga E, Mazur E, Zielinski R, Szyszka R (2007) Yeast holoenzyme of protein kinase CK2 requires both beta and beta’ regulatory subunits for its activity. Mol Cell Biochem 295:229–236. doi:10.1007/s11010-006-9292-6

    Article  PubMed  CAS  Google Scholar 

  32. Boldyreff B, Meggio F, Pinna LA, Issinger OG (1994) Protein kinase CK2 structure-function relationship: effects of the beta subunit on reconstitution and activity. Cell Mol Biol Res 40:391–399

    PubMed  CAS  Google Scholar 

  33. Duncan JS, Litchfield DW (2008) Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta 1784:33–47

    PubMed  CAS  Google Scholar 

  34. Bosc DG, Graham KC, Saulnier RB, Zhang C, Prober D, Gietz RD et al (2000) Identification and characterization of CKIP-1, a Novel Pleckstrin homology domain-containing protein that interacts with protein kinase CK2. J Biol Chem 275:14295–14306. doi:10.1074/jbc.275.19.14295

    Article  PubMed  CAS  Google Scholar 

  35. Bosc DG, Slominski E, Sichler C, Litchfield DW (1995) Phosphorylation of casein kinase II by p34cdc2. Identification of phosphorylation sites using phosphorylation site mutants in vitro. J Biol Chem 270:25872–25878. doi:10.1074/jbc.270.43.25872

    Article  PubMed  CAS  Google Scholar 

  36. Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H et al (2001) A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 7:283–292. doi:10.1016/S1097-2765(01)00176-9

    Article  PubMed  CAS  Google Scholar 

  37. Keller DM, Lu H (2002) p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J Biol Chem 277:50206–50213. doi:10.1074/jbc.M209820200

    Article  PubMed  CAS  Google Scholar 

  38. Litchfield DW, Lozeman FJ, Cicirelli MF, Harrylock M, Ericsson LH, Piening CJ et al (1991) Phosphorylation of the beta subunit of casein kinase II in human A431 cells. Identification of the autophosphorylation site and a site phosphorylated by p34cdc2. J Biol Chem 266:20380–20389

    PubMed  CAS  Google Scholar 

  39. Litchfield DW, Lüscher B, Lozeman FJ, Eisenman RN, Krebs EG (1992) Phosphorylation of casein kinase II by p34cdc2 in vitro and at mitosis. J Biol Chem 267:13943–13951

    PubMed  CAS  Google Scholar 

  40. Messenger MM, Saulnier RB, Gilchrist AD, Diamond P, Gorbsky GJ, Litchfield DW (2002) Interactions between protein kinase CK2 and Pin1. Evidence for phosphorylation-dependent interactions. J Biol Chem 277:23054–23064. doi:10.1074/jbc.M200111200

    Article  PubMed  CAS  Google Scholar 

  41. Olsten ME, Canton DA, Zhang C, Walton PA, Litchfield DW (2004) The Pleckstrin homology domain of CK2 interacting protein-1 is required for interactions and recruitment of protein kinase CK2 to the plasma membrane. J Biol Chem 279:42114–42127. doi:10.1074/jbc.M407628200

    Article  PubMed  CAS  Google Scholar 

  42. Olsten MEK, Litchfield DW (2004) Order or chaos? An evaluation of the regulation of protein kinase CK2. Biochem Cell Biol 82:681–693. doi:10.1139/o04-116

    Article  PubMed  CAS  Google Scholar 

  43. Arrigoni G, Pagano MA, Sarno S, Cesaro L, James P, Pinna LA (2008) Mass spectrometry analysis of a protein kinase CK2beta subunit interactome isolated from mouse brain by affinity chromatography. J Proteome Res 7:990–1000. doi:10.1021/pr070500s

    Article  PubMed  CAS  Google Scholar 

  44. Canton DA, Olsten MEK, Kim K, Doherty-Kirby A, Lajoie G, Cooper JA et al (2005) The Pleckstrin homology domain-containing protein CKIP-1 is involved in regulation of cell morphology and the actin cytoskeleton and interaction with actin capping protein. Mol Cell Biol 25:3519–3534. doi:10.1128/MCB.25.9.3519-3534.2005

    Article  PubMed  CAS  Google Scholar 

  45. Canton DA, Olsten MEK, Niederstrasser H, Cooper JA, Litchfield DW (2006) The role of CKIP-1 in cell morphology depends on its interaction with actin-capping protein. J Biol Chem 281:36347–36359. doi:10.1074/jbc.M607595200

    Article  PubMed  CAS  Google Scholar 

  46. Canton DA, Litchfield DW (2006) The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal 18:267–275. doi:10.1016/j.cellsig.2005.07.008

    Article  PubMed  CAS  Google Scholar 

  47. Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M et al (2008) The BioGRID Interaction Database: 2008 update. Nucleic Acids Res 36:D637–D640. doi:10.1093/nar/gkm1001

    Article  PubMed  CAS  Google Scholar 

  48. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539. doi:10.1093/nar/gkj109

    Article  PubMed  CAS  Google Scholar 

  49. Lomax J (2005) Get ready to GO! A biologist’s guide to the gene ontology. Brief Bioinform 6:298–304. doi:10.1093/bib/6.3.298

    Article  PubMed  CAS  Google Scholar 

  50. Park YR, Park CH, Kim JH (2005) GOChase: correcting errors from gene ontology-based annotations for gene products. Bioinformatics 21:829–831. doi:10.1093/bioinformatics/bti106

    Article  PubMed  CAS  Google Scholar 

  51. Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S et al (2004) Proteomic, functional, and domain-based analysis of in vivo 14–3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol 14:1436–1450. doi:10.1016/j.cub.2004.07.051

    Article  PubMed  CAS  Google Scholar 

  52. Uetz P, Cagney GL, Mansfield G, Judson TA, Knight RS Jr, Lockshon D et al (2000) A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403:623–627. doi:10.1038/35001009

    Article  PubMed  CAS  Google Scholar 

  53. Ito T, CT Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569–4574. doi:10.1073/pnas.061034498

    Article  PubMed  CAS  Google Scholar 

  54. Ho Y, Heilbut GA, Bader A, Moore GD, Adams L, Millar SL et al (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183. doi:10.1038/415180a

    Article  PubMed  CAS  Google Scholar 

  55. Gavin A-C, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147. doi:10.1038/415141a

    Article  PubMed  CAS  Google Scholar 

  56. Gavin A-C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636. doi:10.1038/nature04532

    Article  PubMed  CAS  Google Scholar 

  57. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643. doi:10.1038/nature04670

    Article  PubMed  CAS  Google Scholar 

  58. Collins SR, Kemmeren P, Zhao XC, Greenblatt JF, Spencer F, Holstege FC et al (2007) Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 6:439–450. doi:10.1074/mcp.M600381-MCP200

    PubMed  CAS  Google Scholar 

  59. Hesselberth MJ Jr, Golob A, Stajich JE, Michaud GA, Fields S (2006) Comparative analysis of Saccharomyces cerevisiae WW domains and their interacting proteins. Genome Biol 7:R30. doi:10.1186/gb-2006-7-4-r30

    Article  PubMed  CAS  Google Scholar 

  60. Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J et al (2005) Global analysis of protein phosphorylation in yeast. Nature 438:679–684. doi:10.1038/nature04187

    Article  PubMed  CAS  Google Scholar 

  61. Ackermann K, Waxmann A, Glover CV, Pyerin W (2001) Genes targeted by protein kinase CK2: a genome-wide expression array analysis in yeast. Mol Cell Biochem 227:59–66. doi:10.1023/A:1013104705100

    Article  PubMed  CAS  Google Scholar 

  62. Lee I, Date SV, Adai AT, Marcotte EM (2004) A probabilistic functional network of yeast genes. Science 306:1555–1558. doi:10.1126/science.1099511

    Article  PubMed  CAS  Google Scholar 

  63. Poole A, Poore T, Bandhakavi S, McCann RO, Hanna DE, Glover CV (2005) A global view of CK2 function and regulation. Mol Cell Biochem 274:163–170. doi:10.1007/s11010-005-2945-z

    Article  PubMed  CAS  Google Scholar 

  64. Benzinger A, Koch MN, Yates HB Jr, Hermeking H (2005) Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer. Mol Cell Proteomics 4:785–795. doi:10.1074/mcp.M500021-MCP200

    Article  PubMed  CAS  Google Scholar 

  65. Ewing RM, Elisma CP, Li F, Taylor H, Climie P, McBroom-Cerajewski S et al (2007) Large-scale mapping of human protein–protein interactions by mass spectrometry. Mol Syst Biol 3:89. doi:10.1038/msb4100134

    Article  PubMed  CAS  Google Scholar 

  66. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N BG, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Wong SL, Franklin G, Li S, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Venhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178. doi:10.1038/nature04209

    Article  PubMed  CAS  Google Scholar 

  67. Bibby AC, Litchfield DW (2005) The multiple personalities of the regulatory subunit of protein kinase CK2: CK2 dependent and CK2 independent roles reveal a secret identity for CK2beta. Int J Biol Sci 1:67–79

    PubMed  CAS  Google Scholar 

  68. Filhol O, Nueda A, Martel V, Gerber-Scokaert D, Benitez MJ, Souchier C et al (2003) Live-cell fluorescence imaging reveals the dynamics of protein kinase CK2 individual subunits. Mol Cell Biol 23:975–987. doi:10.1128/MCB.23.3.975-987.2003

    Article  PubMed  CAS  Google Scholar 

  69. Arrigoni G, Marin O, Pagano MA, Settimo L, Paolin B, Meggio F et al (2004) Phosphorylation of calmodulin fragments by protein kinase CK2. Mechanistic aspects and structural consequences. Biochemistry 43:12788–12798. doi:10.1021/bi049365c

    Article  PubMed  CAS  Google Scholar 

  70. Meggio F, Marin O, Boschetti M, Sarno S, Pinna LA (2001) HIV-1 Rev transactivator: a beta-subunit directed substrate and effector of protein kinase CK2. Mol Cell Biochem 227:145–151. doi:10.1023/A:1013177326481

    Article  PubMed  CAS  Google Scholar 

  71. Palen E, Traugh JA (1991) Phosphorylation of casein kinase II. Biochemistry 30:5586–5590. doi:10.1021/bi00236a035

    Article  PubMed  CAS  Google Scholar 

  72. Guerra B, Issinger OG, Wang JY (2003) Modulation of human checkpoint kinase Chk1 by the regulatory beta-subunit of protein kinase CK2. Oncogene 22:4933–4942. doi:10.1038/sj.onc.1206721

    Article  PubMed  CAS  Google Scholar 

  73. Kristensen LP, Larsen MR, Hojrup P, Issinger OG, Guerra B (2004) Phosphorylation of the regulatory beta-subunit of protein kinase CK2 by checkpoint kinase Chk1: identification of the in vitro CK2beta phosphorylation site. FEBS Lett 569:217–223. doi:10.1016/j.febslet.2004.05.069

    Article  PubMed  CAS  Google Scholar 

  74. Maccario H, Perera NM, Davidson L, Downes CP, Leslie NR (2007) PTEN is destabilized by phosphorylation on Thr366. Biochem J 405:439–444. doi:10.1042/BJ20061837

    Article  PubMed  CAS  Google Scholar 

  75. Pluemsampant S, Safronova OS, Nakahama K, Morita I (2008) Protein kinase CK2 is a key activator of histone deacetylase in hypoxia-associated tumors. Int J Cancer 122:333–341. doi:10.1002/ijc.23094

    Article  PubMed  CAS  Google Scholar 

  76. Tsai SC, Seto E (2002) Regulation of histone deacetylase 2 by protein kinase CK2. J Biol Chem 277:31826–31833. doi:10.1074/jbc.M204149200

    Article  PubMed  CAS  Google Scholar 

  77. Duncan JS, Gyenis L, Lenehan J, Bretner M, Graves LM, Haystead TA, Litchfield DW (2008) An unbiased evaluation of CK2 inhibitors by chemo-proteomics: characterization of inhibitor effects on CK2 and identification of novel inhibitor targets. Mol Cell Proteomics 7:1077–1088

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The presented work was supported by operating grants from the Canadian Institute of Health Research and the National Cancer Institute of Canada. We thank all present and past members of the Litchfield lab for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Litchfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyenis, L., Litchfield, D.W. The emerging CK2 interactome: insights into the regulation and functions of CK2. Mol Cell Biochem 316, 5–14 (2008). https://doi.org/10.1007/s11010-008-9830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9830-5

Keywords

Navigation