Skip to main content
Log in

Evaluating CK2 activity with the antibody specific for the CK2-phosphorylated form of a kinase-targeting cochaperone Cdc37

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

CK2-dependent phosphorylation of a kinase-specific Hsp90 co-chaperone Cdc37 on a conserved serine residue (Ser13) is essential for the function of Cdc37 [Bandhakavi S. et al. J. Biol. Chem. 278:2829–2836, 2003; Shao J. et al. J. Biol. Chem. 278:38117–38220, 2003; Miyata Y., & Nishida E. Mol. Cell. Biol. 24:4065–4074, 2004]. We have recently produced an anti-[pSer13]-Cdc37 antibody which specifically recognizes Cdc37 that is phosphorylated on Ser 13 [Miyata Y. & Nishida E. FEBS J. 274:5690–5703, 2007]. Here we investigated CK2 activity both in vitro and in cultured cells by using anti-[pSer13]-Cdc37 antibody. Immunoblotting with this antibody showed that heparin and 4,5,6,7-tetrabromobenzotriazole (TBB), known CK2 inhibitors, inhibited in vitro phosphorylation of Cdc37 on Ser13 by CK2 holoenzyme or CK2α, confirming the specificity of the antibody to detect CK2 activity. Treatment of cells with TBB resulted in the decrease in the phosphorylation level of endogenous Cdc37 on Ser13, as revealed by anti-[pSer13]-Cdc37, and overexpression of either CK2α or CK2β subunit enhanced the Cdc37 phosphorylation level. While CK2 is suggested to be involved in cell proliferation, mitogenic stimulation of starved cells by fresh serum or insulin-like growth factor-I did not enhance phosphorylation of Cdc37 on Ser13. CK2 inhibitors are known to induce cell apoptosis, suggesting a reverse correlation between cell apoptosis and CK2 activity. However, cellular apoptotic stresses, such as anisomycin treatment and UV irradiation, were found to rather modestly increase phosphorylation of Cdc37 on Ser13. These results show that the anti-[pSer13]-Cdc37 antibody can be a promising new tool to evaluate in vivo CK2 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Hsp90:

Heat shock protein 90

Cdc37:

Cell division cycle 37

DMAT:

2-Dimethylamino-4, 5, 6, 7-tetrabromo-1H-benzimidazole

TBB:

4, 5, 6, 7-Tetrabromobenzotriazole

IGF-I:

Insulin-like growth factor-I

FCS:

Fetal calf serum

References

  1. Pinna LA, Meggio F (1997) Protein kinase CK2 (“casein kinase-2”) and its implication in cell division and proliferation. Prog Cell Cycle Res 3:77–97

    PubMed  CAS  Google Scholar 

  2. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15. doi:10.1042/BJ20021469

    Article  PubMed  CAS  Google Scholar 

  3. Guerra B, Issinger OG (1999) Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis 20:391–408. doi:10.1002/(SICI)1522-2683(19990201)20:2<391::AID-ELPS391>3.0.CO;2-N

    Article  PubMed  CAS  Google Scholar 

  4. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368. doi:10.1096/fj.02-0473rev

    Article  PubMed  CAS  Google Scholar 

  5. Filhol O, Martiel J-L, Cochet C (2004) Protein kinase CK2: a new view of an old molecular complex. EMBO Rep 5:351–355. doi:10.1038/sj.embor.7400115

    Article  PubMed  CAS  Google Scholar 

  6. Olsten ME, Litchfield DW (2004) Order or chaos? An evaluation of the regulation of protein kinase CK2. Biochem Cell Biol 82:681–693. doi:10.1139/o04-116

    Article  PubMed  CAS  Google Scholar 

  7. Guerra B, Boldyreff B, Sarno S, Cesaro L, Issinger OG, Pinna LA (1999) CK2: a protein kinase in need of control. Pharmacol Ther 82:303–313. doi:10.1016/S0163-7258(98)00064-3

    Article  PubMed  CAS  Google Scholar 

  8. Pinna LA (2003) The raison d’etre of constitutively active protein kinase: the lesson of CK2. Acc Chem Res 36:378–384. doi:10.1021/ar020164f

    Article  PubMed  CAS  Google Scholar 

  9. Xu X, Landesman-Bollag E, Channavajhala PL, Seldin DC (1999) Murine protein kinase CK2: gene and oncogene. Mol Cell Biochem 191:65–74. doi:10.1023/A:1006866412652

    Article  PubMed  CAS  Google Scholar 

  10. Landesman-Bollag E, Song DH, Romieu-Mourez R, Sussman DJ, Cardiff RD, Sonenshein GE et al (2001) Protein kinase CK2: signaling and tumorigenesis in the mammary gland. Mol Cell Biochem 227:153–165. doi:10.1023/A:1013108822847

    Article  PubMed  CAS  Google Scholar 

  11. Sommercorn J, Mulligan JA, Lozeman FJ, Krebs EG (1987) Activation of casein kinase II in response to insulin and to epidermal growth factor. Proc Natl Acad Sci USA 84:8834–8838. doi:10.1073/pnas.84.24.8834

    Article  PubMed  CAS  Google Scholar 

  12. Ackerman P, Osheroff N (1989) Regulation of casein kinase II activity by epidermal growth factor in human A-431 carcinoma cells. J Biol Chem 264:11958–11965

    PubMed  CAS  Google Scholar 

  13. Klarlund JK, Czech MP (1988) Insulin-like growth factor I and insulin rapidly increase casein kinase II activity in BALB/c 3T3 fibroblasts. J Biol Chem 263:15872–15875

    PubMed  CAS  Google Scholar 

  14. Carroll D, Marshak DR (1989) Serum-stimulated cell growth causes oscillations in casein kinase II activity. J Biol Chem 264:7345–7348

    PubMed  CAS  Google Scholar 

  15. Litchfield DW, Dobrowolska G, Krebs EG (1994) Regulation of casein kinase II by growth factors: a reevaluation. Cell Mol Biol Res 40:373–381

    PubMed  CAS  Google Scholar 

  16. Unger GM, Davis AT, Slaton JW, Ahmed K (2004) Protein kinase CK2 as regulator of cell survival: implications for cancer therapy. Curr Cancer Drug Targets 4:77–84. doi:10.2174/1568009043481687

    Article  PubMed  Google Scholar 

  17. Ahmed K, Gerber DA, Cochet C (2002) Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol 12:226–230. doi:10.1016/S0962-8924(02)02279-1

    Article  PubMed  CAS  Google Scholar 

  18. Allada R, Meissner RA (2005) Casein kinase 2, circadian clocks, and the flight from mutagenic light. Mol Cell Biochem 274:141–149. doi:10.1007/s11010-005-2943-1

    Article  PubMed  CAS  Google Scholar 

  19. Blau J (2003) A new role for an old kinase: CK2 and the circadian clock. Nat Neurosci 6:208–210. doi:10.1038/nn0303-208

    Article  PubMed  CAS  Google Scholar 

  20. Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–273. doi:10.1083/jcb.200104079

    Article  PubMed  CAS  Google Scholar 

  21. Prodromou C, Pearl LH (2003) Structure and functional relationships of Hsp90. Curr Cancer Drug Targets 3:301–323. doi:10.2174/1568009033481877

    Article  PubMed  CAS  Google Scholar 

  22. Pearl LH (2005) Hsp90 and Cdc37—a chaperone cancer conspiracy. Curr Opin Genet Dev 15:55–61. doi:10.1016/j.gde.2004.12.011

    Article  PubMed  CAS  Google Scholar 

  23. MacLean M, Picard D (2003) Cdc37 goes beyond Hsp90 and kinases. Cell Stress Chaperones 8:114–119. doi:10.1379/1466-1268(2003)008<0114:CGBHAK>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  24. Shao J, Prince T, Hartson SD, Matts RL (2003) Phosphorylation of serine 13 is required for the proper function of the Hsp90 co-chaperone, Cdc37. J Biol Chem 278:38117–38220. doi:10.1074/jbc.C300330200

    Article  PubMed  CAS  Google Scholar 

  25. Bandhakavi S, McCann RO, Hanna DE, Glover CVC (2003) A positive feedback loop between protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases. J Biol Chem 278:2829–2836. doi:10.1074/jbc.M206662200

    Article  PubMed  CAS  Google Scholar 

  26. Miyata Y, Nishida E (2004) CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone Cdc37. Mol Cell Biol 24:4065–4074. doi:10.1128/MCB.24.9.4065-4074.2004

    Article  PubMed  CAS  Google Scholar 

  27. Arlander SJ, Felts SJ, Wagner JM, Stensgard B, Toft DO, Karnitz LM (2006) Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J Biol Chem 281:2989–2998. doi:10.1074/jbc.M508687200

    Article  PubMed  CAS  Google Scholar 

  28. Miyata Y, Nishida E (2007) Analysis of the CK2-dependent phosphorylation of serine 13 in Cdc37 using a phospho-specific antibody and phospho-affinity gel electrophoresis. FEBS J 274:5690–5703. doi:10.1111/j.1742-4658.2007.06090.x

    Article  PubMed  CAS  Google Scholar 

  29. Miyata Y, Yahara I (1992) The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. J Biol Chem 267:7042–7047

    PubMed  CAS  Google Scholar 

  30. Miyata Y, Nishida E (2005) CK2 binds, phosphorylates, and regulates its pivotal substrate Cdc37, an Hsp90-cochaperone. Mol Cell Biochem 274:171–179. doi:10.1007/s11010-005-2949-8

    Article  PubMed  CAS  Google Scholar 

  31. Miyata Y, Yahara I (1995) Interaction between casein kinase II and the 90-kDa stress protein, HSP90. Biochemistry 34:8123–8129. doi:10.1021/bi00025a019

    Article  PubMed  CAS  Google Scholar 

  32. Pagano MA, Meggio F, Ruzzene M, Andrzejewska M, Kazimierczuk Z, Pinna LA (2004) 2-Dimethylamino-4, 5, 6, 7-tetrabromo-1H-benzimidazole: a novel powerful and selective inhibitor of protein kinase CK2. Biochem Biophys Res Commun 321:1040–1044. doi:10.1016/j.bbrc.2004.07.067

    Article  PubMed  CAS  Google Scholar 

  33. Heller-Harrison RA, Czech MP (1991) Enhanced casein kinase II activity in COS-1 cells upon overexpression of either its catalytic or noncatalytic subunit. J Biol Chem 266:14435–14439

    PubMed  CAS  Google Scholar 

  34. Sarno S, Moro S, Meggio F, Zagotto G, Dal Ben D, Ghisellini P et al (2002) Toward the rational design of protein kinase casein kinase-2 inhibitors. Pharmacol Ther 93:159–168. doi:10.1016/S0163-7258(02)00185-7

    Article  PubMed  CAS  Google Scholar 

  35. Miyata Y, Nishida E (2004) Supervision of multiple signaling protein kinases by the CK2-Cdc37 couple, a possible novel cancer therapeutic target. Ann N Y Acad Sci 1030:150–157. doi:10.1196/annals.1329.019

    Article  PubMed  CAS  Google Scholar 

  36. Sarno S, Ruzzene M, Frascella P, Pagano MA, Meggio F, Zambon A et al (2005) Development and exploitation of CK2 inhibitors. Mol Cell Biochem 274:69–76. doi:10.1007/s11010-005-3079-z

    Article  PubMed  CAS  Google Scholar 

  37. Pinna LA (2002) Protein kinase CK2: a challenge to canons. J Cell Sci 115:3873–3878. doi:10.1242/jcs.00074

    Article  PubMed  CAS  Google Scholar 

  38. Allende JE, Allende CC (1995) Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J 9:313–323

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank T. Sakabe for excellent technical assistance. This work was supported by grants-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Miyata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyata, Y., Nishida, E. Evaluating CK2 activity with the antibody specific for the CK2-phosphorylated form of a kinase-targeting cochaperone Cdc37. Mol Cell Biochem 316, 127–134 (2008). https://doi.org/10.1007/s11010-008-9818-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9818-1

Keywords

Navigation