Skip to main content
Log in

hBolA, novel non-classical secreted proteins, belonging to different BolA family with functional divergence

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study reported that all three human BolA proteins (hBolA1, hBolA2, and hBolA3) are novel non-classical secreted proteins identified with bioinformatics and molecular biology experiments. The three BolA fusion proteins with c-Myc tag could be secreted into the culture medium of the transfected Cos-7 cells, although they could not be colocalized with Golgi apparatus. And the secretion of three BolA proteins could not be inhibited after BFA treatment. Furthermore, the secretion was not dependent on its predicted signal peptide. All the experiment results suggested that the secretion was a non-classical export. Phylogenetic analysis showed that the human BolAs belong to three different groups with functional divergence of BolA subfamily, where the different helix-turn-helix motif among hBolA1, hBolA2, and hBolA3 could be responsible for their functional divergence. Our data provided a basis for functional studies of BolA protein family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HTH motif:

Helix-turn-helix motif

ER:

Endoplasmic reticulum

TGN:

Trans-Golgi network

SP:

Signal peptide

BFA:

Brefeldin A

AMW:

Apparent molecular weight

References

  1. Kasai T, Inoue M, Koshiba S et al (2004) Solution structure of a BolA-like protein from Mus musculus. Protein Sci 13:545–548. doi:10.1110/ps.03401004

    Article  PubMed  CAS  Google Scholar 

  2. Aldea M, Hernandez-Chico C, de la Campa AG et al (1988) Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J Bacteriol 170:5169–5176

    PubMed  CAS  Google Scholar 

  3. Aldea M, Garrido T, Hernandez-Chico C, Vicente M, Kushner SR (1989) Induction of a growth-phase-dependent promoter triggers transcription of bolA, an Escherichia coli morphogene. EMBO J 8:3923–3931

    PubMed  CAS  Google Scholar 

  4. Santos JM, Freire P, Vicente M, Arraiano CM (1999) The stationary-phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Mol Microbiol 32:789–798. doi:10.1046/j.1365-2958.1999.01397.x

    Article  PubMed  CAS  Google Scholar 

  5. Santos JM, Lobo M, Matos AP, De Pedro MA, Arraiano CM (2002) The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli. Mol Microbiol 45:1729–1740. doi:10.1046/j.1365-2958.2002.03131.x

    Article  PubMed  CAS  Google Scholar 

  6. Lee JK, Park EJ, Chung HK et al (1994) Isolation of UV-inducible transcripts from Schizosaccharomyces pombe. Biochem Biophys Res Commun 202:1113–1119. doi:10.1006/bbrc.1994.2043

    Article  PubMed  CAS  Google Scholar 

  7. Kim SH, Kim M, Lee JK et al (1997) Identification and expression of uvi31+, a UV-inducible gene from Schizosaccharomyces pombe. Environ Mol Mutagen 30:72–81. doi:10.1002/(SICI)1098-2280(1997)30:1<72::AID-EM10>3.0.CO;2-N

  8. Kim MJ, Kim HS, Lee JK, Lee CB, Park SD (2002) Regulation of septation and cytokinesis during resumption of cell division requires uvi31+, a UV-inducible gene of fission yeast. Mol Cells 14:425–430

    PubMed  CAS  Google Scholar 

  9. Kim JGAR, Berndt JA, Kim NW, Hudson LD (1998) A secreted DNA-binding protein that is translated through an internal ribosome entry site (IRES) and distributed in a discrete pattern in the central nervous system. Mol Cell Neurosci 12:119–140. doi:10.1006/mcne.1998.0701

    Article  PubMed  CAS  Google Scholar 

  10. Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17:349–356. doi:10.1093/protein/gzh037

    Article  PubMed  CAS  Google Scholar 

  11. Bendtsen JD, Kiemer L, Fausboll A, Brunak S (2005) Non-classical protein secretion in bacteria. BMC Microbiol 5:58–70. doi:10.1186/1471-2180-5-58

    Article  PubMed  Google Scholar 

  12. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  PubMed  CAS  Google Scholar 

  13. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245. doi:10.1093/bioinformatics/17.12.1244

    Article  PubMed  CAS  Google Scholar 

  14. Creevey CJ, McInerney JO (2003) CRANN: detecting adaptive evolution in protein-coding DNA sequences. Bioinformatics 19:1726. doi:10.1093/bioinformatics/btg225

    Article  PubMed  CAS  Google Scholar 

  15. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  16. Gu X (1999) Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol 16:1664–1674

    PubMed  CAS  Google Scholar 

  17. Gu X (2001) A site-specific measure for rate difference after gene duplication or speciation. Mol Biol Evol 18:2327–2330

    PubMed  CAS  Google Scholar 

  18. Zhou YB, Liu F, Zhu ZD et al (2004) N-glycosylation is required for efficient secretion of a novel human secreted glycoprotein, hPAP21. FEBS Lett 576:401–407. doi:10.1016/j.febslet.2004.09.039

    Article  PubMed  CAS  Google Scholar 

  19. Zhou YB, Cao JB, Yang HM et al (2007) hZG16, a novel human secreted protein expressed in liver, was down-regulated in hepatocellular carcinoma. Biochem Biophys Res Commun 355:679–686. doi:10.1016/j.bbrc.2007.02.020

    Article  PubMed  CAS  Google Scholar 

  20. Cleves AE (1997) Protein transports: the nonclassical ins and outs. Curr Biol 7:R318–R320. doi:10.1016/S0960-9822(06)00148-5

    Article  PubMed  CAS  Google Scholar 

  21. Tanudji M, Hevi S, Chuck SL (2003) The nonclassic secretion of thioredoxin is not sensitive to redox state. Am J Physiol Cell Physiol 284:C1272–C1279

    PubMed  CAS  Google Scholar 

  22. Cao JB, Zhou YB, Qi J et al (2006) Molecular cloning and characterization of mBolA1, a novel mouse secreted protein. China Biotechnol 26:1–7

    CAS  Google Scholar 

  23. Cuff JA, Barton GJ (2000) Application of enhanced multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40:502–511. doi:10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q

    Google Scholar 

  24. Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20:426–427. doi:10.1093/bioinformatics/btg430

    Article  PubMed  CAS  Google Scholar 

  25. Nickel W (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 270:2109–2119. doi:10.1046/j.1432-1033.2003.03577.x

    Article  PubMed  CAS  Google Scholar 

  26. Koch B, Nybroe O (2006) Initial characterization of a bolA homologue from Pseudomonas fluorescens indicates different roles for BolA-like proteins in P. fluorescens and Escherichia coli. FEMS Microbiol Lett 262:48–56. doi:10.1111/j.1574-6968.2006.00359.x

    Article  PubMed  CAS  Google Scholar 

  27. Carginale V, Trinchella F, Capasso C et al (2004) Adaptive evolution and functional divergence of pepsin gene family. Gene 333:81–90. doi:10.1016/j.gene.2004.02.011

    Article  PubMed  CAS  Google Scholar 

  28. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155. doi:10.1126/science.290.5494.1151

    Article  PubMed  CAS  Google Scholar 

  29. Huynen MA, Spronk CA, Gabaldon T, Snel B (2005) Combining data from genomes, Y2H and 3D structure indicates that BolA is a reductase interacting with a glutaredoxin. FEBS Lett 579:591–596. doi:10.1016/j.febslet.2004.11.111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese High Tech R&D Program (2006AA02Z193), Chinese National Key Program on Basic Research (2004CB518605), National Natural Science Foundation of China (30425019), and Shanghai Commission for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Guang Han.

Additional information

Yu-Bo Zhou, Jia-Bing Cao, and Bing-Bing Wan contributed equally to this work.

Electronic Supplementary material

Supplement 1

Primary structure of hBolA1, hBolA2 and hBolA3. (A) Schematic representation of protein structure of hBolA1, hBolA2 and hBolA3. “SP” means signal peptide and HTH motif means helix-turn-helix motif. (B) Schematic representation of genomic structure of hBolA1, hBolA2 and hBolA3. (PDF 25 kb)

Supplement 2

Tissue expression profiles of hBolA1, hBolA2 and hBolA3 genes detected with RT-PCR. (PDF 31 kb)

Supplement 3

The AMW change of hBolAs treated without(-) or with(+) tunicamycin treatment. (PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, YB., Cao, JB., Wan, BB. et al. hBolA, novel non-classical secreted proteins, belonging to different BolA family with functional divergence. Mol Cell Biochem 317, 61–68 (2008). https://doi.org/10.1007/s11010-008-9809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9809-2

Keywords

Navigation