Skip to main content
Log in

Caffeic acid phenethyl ester (CAPE) protects brain against oxidative stress and inflammation induced by diabetes in rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Diabetic patients reveal significant disorders, such as nephropathy, cardiomyopathy, and neuropathy. As oxidative stress and inflammation seem to be implicated in the pathogenesis of diabetic brain, we aimed to investigate the effects of caffeic acid phenethyl ester (CAPE) on oxidative stress and inflammation in diabetic rat brain. Diabetes was induced by a single dose of streptozotocin (45 mg kg−1, i.p.) injection into rats. Two days after streptozotocin treatment 10 μM kg−1 day−1 CAPE was administrated and continued for 60 days. Here, we demonstrate that CAPE significantly decreased the levels of nitric oxide and malondialdehyde induced by diabetes, and the activities of catalase, glutathione peroxidase, and xanthine oxidase in the brain. However, glutathione levels were increased by CAPE. The mRNA expressions of tumor necrosis factor (TNF)-α and interferon (IFN)-γ, and inducible nitric oxide synthase (iNOS) were remarkably enhanced in brain by diabetes. CAPE treatments significantly suppressed these inflammatory cytokines (about 70% for TNF-α, 26% for IFN-γ) and NOS (completely). Anti-inflammatory cytokine IL-10 mRNA expression was not affected by either diabetes or CAPE treatments. In conclusion, diabetes induces oxidative stress and inflammation in the brain, and these may be contributory mechanisms involved in this disorder. CAPE treatment may reverse the diabetic-induced oxidative stress in rat brains. Moreover, CAPE reduces the mRNA expressions of TNF-α and IFN-γ in diabetic brain; suggesting CAPE suppresses inflammation as well as oxidative stress occurred in the brain of diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aragno M, Parola S, Brignardello E et al (2000) Dehydroepiandrosterone prevents oxidative injury induced by transient ischemia/reperfusion in the brain of diabetic rats. Diabetes 49:1924–1931

    Article  PubMed  CAS  Google Scholar 

  2. Aragno M, Parola S, Tamagno E et al (2000) Oxidative derangement in rat synaptosomes induced by hyperglycaemia: restorative effect of dehydroepiandrosterone treatment. Biochem Pharmacol 60:389–395

    Article  PubMed  CAS  Google Scholar 

  3. Young IS, Tate S, Lightbody JH et al (1995) The effects of desferrioxamine and ascorbate on oxidative stress in the streptozotocin diabetic rat. Free Radic Biol Med 18:833–840

    Article  PubMed  CAS  Google Scholar 

  4. Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    Article  PubMed  CAS  Google Scholar 

  5. Ceriello A, Giugliano D, Quatraro A et al (1991) Metabolic control may influence the increased superoxide generation in diabetic serum. Diabet Med 8:540–542

    Article  PubMed  CAS  Google Scholar 

  6. Matsumoto S, Koshiishi I, Inoguchi T et al (2003) Confirmation of superoxide generation via xanthine oxidase in streptozotocin-induced diabetic mice. Free Radic Res 37:767–772

    Article  PubMed  CAS  Google Scholar 

  7. Ovtscharoff W, Bozhilova-Pastirova A, Christova T (2002) Postnatal development of neurons expressingNADPH-diaphorase and parvalbumin in the parietal cortex of male and female rats. Acta Histochem 104:23–28

    Article  PubMed  CAS  Google Scholar 

  8. Revsin Y, Saravia F, Roig P et al (2005) Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes. Brain Res 1038:22–31

    Article  PubMed  CAS  Google Scholar 

  9. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  PubMed  CAS  Google Scholar 

  10. Zhang L, Zalewski A, Liu Y et al (2003) Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation 108:472–478

    Article  PubMed  CAS  Google Scholar 

  11. Fernandez-Real JM, Ricart W (2003) Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 24:278–301

    Article  PubMed  CAS  Google Scholar 

  12. Schram MT, Chaturvedi N, Schalkwijk CG et al (2005) Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes–the EURODIAB prospective complications study. Diabetologia 48:370–378

    Article  PubMed  CAS  Google Scholar 

  13. Bonnefont-Rousselot D, Bastard JP, Jaudon MC et al (2000) Consequences of the diabetic status on the oxidant/antioxidant balance. Diabetes Meta 26:163–176

    CAS  Google Scholar 

  14. Sud’ina GF, Mirzoeva OK, Pushkareva MA et al (1993) Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett 329:21–24

    Article  PubMed  CAS  Google Scholar 

  15. Michaluart P, Masferrer JL, Carothers AM et al (1999) Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation. Cancer Res 59:2347–2352

    PubMed  CAS  Google Scholar 

  16. Park EH, Kahng JH (1999) Suppressive effects of propolis in rat adjuvant arthritis. Arch Pharm Res 22:554–558

    Article  PubMed  CAS  Google Scholar 

  17. Okutan H, Ozcelik N, Yilmaz HR et al (2005) Effects of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat heart. Clin Biochem 38:191–196

    Article  PubMed  CAS  Google Scholar 

  18. Yilmaz HR, Uz E, Yucel N et al (2004) Protective effect of caffeic acid phenethyl ester (CAPE) on lipid peroxidation and antioxidant enzymes in diabetic rat liver. J Biochem Mol Toxicol 18:234–238

    Article  PubMed  CAS  Google Scholar 

  19. Orban Z, Mitsiades N, Burke TR Jr et al (2000) Caffeic acid phenethyl ester induces leukocyte apoptosis, modulates nuclear factor-kappa B and suppresses acute inflammation. Neuroimmunomodulation 7:99–105

    Article  PubMed  CAS  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  21. Yoshioka T, Kawada K, Shimada T et al (1979) Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. Am J Obstet Gynecol 135:372–376

    PubMed  CAS  Google Scholar 

  22. Cortas NK, Wakid NW (1990) Determination of inorganic nitrate in serum and urine by a kinetic cadmium-reduction method. Clin Chem 36:1440–1443

    PubMed  CAS  Google Scholar 

  23. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    PubMed  CAS  Google Scholar 

  24. Elman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  Google Scholar 

  25. Aebi Y (1984) Catalase in vitro. Methods Enzymol 105:121–126

    PubMed  CAS  Google Scholar 

  26. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497–500

    PubMed  CAS  Google Scholar 

  27. Prajda N, Weber G (1975) Malignant transformation-linked imbalance: decreased xanthine oxidase activity in hepatomas. FEBS Lett 59:245–259

    Article  PubMed  CAS  Google Scholar 

  28. Tanuma N, Kojima T, Shin T et al (1997) Competitive PCR quantification of pro- and anti-inflammatory cytokine mRNA in the central nervous system during autoimmune encephalomyelitis. J Neuroimmunol 73:197–206

    Article  PubMed  CAS  Google Scholar 

  29. Farghali H, Canova N, Gaier N et al (2002) Inhibition of endotoxemia-induced nitric oxide synthase expression by cyclosporin A enhances hepatocyte injury in rats: amelioration by NO donors. Int Immunopharmacol 2:117–127

    Article  PubMed  CAS  Google Scholar 

  30. Kostic MM, Erdogan S, Rena G et al (1997) Altered expression of PDE1 and PDE4 cyclic nucleotide phosphodiesterase isoforms in 7-oxo-prostacyclin-preconditioned rat heart. J Mol Cell Cardiol 29:3135–3146

    Article  PubMed  CAS  Google Scholar 

  31. Biessels GJ, Kappelle AC, Bravenboer B et al (1994) Cerebral function in diabetes mellitus. Diabetologia 37:643–650

    Article  PubMed  CAS  Google Scholar 

  32. Ates O, Cayli SR, Altinoz E et al (2006) Neuroprotective effect of mexiletine in the central nervous system of diabetic rats. Mol Cell Biochem 286:125–131

    Article  PubMed  CAS  Google Scholar 

  33. Sano T, Umeda F, Hashimoto T et al (1998) Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia 41:1355–1360

    Article  PubMed  CAS  Google Scholar 

  34. McLennan SV, Heffernan S, Wright L et al (1991) Changes in hepatic glutathione metabolism in diabetes. Diabetes 40:344–348

    Article  PubMed  CAS  Google Scholar 

  35. Hunkar T, Aktan F, Ceylan A et al (2002) Antioxidants in diabetes-induced complications (ADIC) study group. Effects of cod liver oil on tissue antioxidant pathways in normal and streptozotocin diabetic rats. Cell Biochem Funct 20:297–302

    Article  PubMed  CAS  Google Scholar 

  36. Celik S, Gorur S, Aslantas O et al (2007) Caffeic acid phenethyl ester suppresses oxidative stress in Escherichia coli-induced pyelonephritis in rats. Mol Cell Biochem 297:131–138

    Article  PubMed  CAS  Google Scholar 

  37. Santini SA, Marra G, Giardina B et al (1997) Defective plasma antioxidant defenses and enhanced susceptibility to lipid peroxidation in uncomplicated IDDM. Diabetes 46:1853–1858

    Article  PubMed  CAS  Google Scholar 

  38. Aliciguzel Y, Ozen I, Aslan M et al (2003) Activities of xanthine oxidoreductase and antioxidant enzymes in different tissues of diabetic rats. J Lab Clin Med 142:172–177

    Article  PubMed  CAS  Google Scholar 

  39. Ozkaya YG, Agar A, Yargicoglu P et al (2002) The effect of exercise on brain antioxidant status of diabetic rats. Diabetes Metab 28:377–384

    PubMed  CAS  Google Scholar 

  40. Ilhan A, Akyol O, Gurel A et al (2004) Protective effects of caffeic acid phenethyl ester against experimental allergic encephalomyelitis-induced oxidative stress in rats. Free Radic Biol Med 37:386–394

    Article  PubMed  CAS  Google Scholar 

  41. Parks DA, Williams TK, Beckman JS (1988) Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a reevaluation. Am J Physiol 254:768–774

    Google Scholar 

  42. Konukoglu D, Serin O, Demiriz Kemerli G et al (1998) A study on the carotid artery intima-media thickness and its association with lipid peroxidation. Clin Chim Acta 277:91–98

    Article  PubMed  CAS  Google Scholar 

  43. Anuradha CV, Selvam R (1993) Effect of oral methionine on tissue lipid peroxidation and antioxidants in alloxan-induced diabetic rats. J Nutr Biochem 4:212–217

    Article  CAS  Google Scholar 

  44. Flyvbjerg A (2000) Putative pathophysiological role of growth factors and cytokines in experimental diabetic kidney disease. Diabetologia 43:1205–1223

    Article  PubMed  CAS  Google Scholar 

  45. Gonzalez-Clemente JM, Mauricio D, Richart C (2005) Diabetic neuropathy is associated with activation of the TNF-alpha system in subjects with type 1 diabetes mellitus. Clin Endocrinol 63:525–529

    Article  CAS  Google Scholar 

  46. Satoh J, Yagihashi S, Toyota T (2003) The possible role of tumor necrosis factor-alpha in diabetic polyneuropathy. Exp Diabesity Res 4:65–71

    PubMed  Google Scholar 

  47. Xiangyang Q, Weijun C, Liegang L et al (2006) Effect of a Siraitia grosvenori extract containing mogrosides on the cellular immune system of type 1 diabetes mellitus mice. Mol Nutr Food Res 50:732–738

    Article  PubMed  CAS  Google Scholar 

  48. Ning L, Zheng-fu X, Hua Z et al (2006) Effects of streptozotocin diabetes on antigen-induced airway inflammation. Chin Med J 119:226–229

    Google Scholar 

  49. Ohno Y, Aoki N, Nishimura A (1993) In vitro production of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 77:1072–1077

    Article  PubMed  CAS  Google Scholar 

  50. Chiao C, Carothers AM, Grunberger D et al (1995) Apoptosis and altered redox state induced by caffeic acid phenethyl ester (CAPE) in transformed rat fibroblast cells. Cancer Res 55:3576–3583

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Scientific and Technical Research Council of Turkey, TUBITAK (project no. TOVAG-105O647). We thank Dr. Sandra Spence (Scotland/UK) for the English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sefa Celik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celik, S., Erdogan, S. Caffeic acid phenethyl ester (CAPE) protects brain against oxidative stress and inflammation induced by diabetes in rats. Mol Cell Biochem 312, 39–46 (2008). https://doi.org/10.1007/s11010-008-9719-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9719-3

Keywords

Navigation