Skip to main content
Log in

Oxidative stress in primary glomerular diseases: a comparative study

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Objective To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure. Methods Seventy-three patients with PGD and 50 controls were enrolled in the study. They were sub-grouped into non-proliferative glomerulonephritis (NPGN) and proliferative glomerulonephritis (PGN). Levels of serum malondialdehyde (MDA), reactive nitrogen intermediates (RNI), plasma total homocysteine (tHcy), urine 8-isoprostane (8-IP), RBC thiols, glutathione-S-transferase (GST) and serum superoxide dismutase (SOD) were measured spectrophotometrically. Results PGD patients showed a significant increase in MDA, RNI, tHcy, 8-IP levels (P < 0.05) and decreased SOD, total thiols and protein bound thiol levels as compared to controls (< 0.05). Significantly higher levels of tHcy, MDA and 8-IP (< 0.05) and lower SOD enzyme activity (< 0.05) were observed in PGN group as compared to NPGN and control groups. These changes remained significant even after adjustment was made for creatinine. Conclusions Oxidative stress in PGN is significantly higher than NPGN, indicating higher oxidative stress in these patients, independent of degree of renal dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noel LH, Gubler MC (2003) Histological classification of chronic glomerular diseases. Rev Prat 53:2005–2012

    PubMed  Google Scholar 

  2. Araujo M, Welch WJ (2006) Oxidative stress and nitric oxide in kidney function. Curr Opin Nephrol Hypertens 15:72–77

    Article  PubMed  CAS  Google Scholar 

  3. Wojcicka G, Beltowski J (2001) Oxidative stress in glomerulonephritis. Postepy Hig Med Dosw 55:855–869

    PubMed  CAS  Google Scholar 

  4. Kuo HT, Kuo MC, Chiu YW, Chang JM, Guh JY, Chen HC (2005) Increased glomerular and extracellular malondialdehyde levels in patients and rats with focal segmental glomerulosclerosis. Eur J Clin Invest 35:245–250

    Article  PubMed  CAS  Google Scholar 

  5. Gaertner SA, Janssen U, Koch OT, Floege KMJ, Gwinner W (2002) Glomerular oxidative and antioxidative systems in experimental mesangioproliferative glomerulonephritis. J Am Soc Nephrol 13:2930–2937

    Article  PubMed  CAS  Google Scholar 

  6. Binder CJ, Weiher H, Exner M, Kerjaschki D (1999) Glomerular overproduction of oxygen radicals in Mpv17 gene-inactivated mice causes podocyte foot process flattening and proteinuria. A model of steroid-resistant nephrosis sensitive to radical scavenger therapy. Am J Pathol 154:1067–1075

    PubMed  CAS  Google Scholar 

  7. Shah SV, Baliga R, Rajapurkar M, Fonseca VA (2007) Oxidants in chronic kidney disease. J Am Soc Nephrol 18:16–28

    Article  PubMed  CAS  Google Scholar 

  8. Vaziri ND (2004) Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Curr Opin Nephrol Hypertens 13:93–99

    Article  PubMed  CAS  Google Scholar 

  9. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM (2002) The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 62:1524–1538

    Article  PubMed  CAS  Google Scholar 

  10. Ikizler TA, Morrow JD, Roberts LJ, Evanson JA, Becker B, Hakim RM, Shyr Y, Himmelfarb J (2002) Plasma F2-isoprostane levels are elevated in chronic hemodialysis patients. Clin Nephrol 58:190–197

    PubMed  CAS  Google Scholar 

  11. Himmelfarb J, Hakim RM (2003) Oxidative stress in uremia. Curr Opin Nephrol Hypertens 12:593–598

    Article  PubMed  CAS  Google Scholar 

  12. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, Himmelfarb J (2004) Increased prevalence of oxidant stress, inflammation in patients with moderate to severe chronic kidney disease. Kidney Int 65:1009–1016

    Article  PubMed  Google Scholar 

  13. Chen HC, Tomino Y, Yaguchi Y et al (1991) Detection of polymorphonuclear cells, superoxide dismutase and poly C9 in glomeruli of patients with IgA nephropathy. Nephron 59:338

    PubMed  CAS  Google Scholar 

  14. Bulucu F, Vural A, Aydin A, Sayal A (2000) Oxidative stress status in adults with nephrotic syndrome. Clin Nephrol 53:169–173

    PubMed  CAS  Google Scholar 

  15. Poelstra K, Hardonk MJ, Koudstaal J, Bakker WW (1990) Intraglomerular platelet aggregation and experimental glomerulonephritis. Kidney Int 37:1500–1508

    Article  PubMed  CAS  Google Scholar 

  16. Lapenna D, Cuccurullo F (1993) TBA test and “free” MDA assay in evaluation of lipid peroxidation and oxidative stress in tissue systems. Am J Physiol 265:1030–1032

    Google Scholar 

  17. Fiddler KM (1977) Collaborative study of modified AOAC method of analysis of nitrite in meat and meat products. J AOAC 60:594–598

    CAS  Google Scholar 

  18. Jocelyn PC (1987) Spectrophotometric assay of thiols. Methods Enzymol 143:44–67

    Article  PubMed  CAS  Google Scholar 

  19. Sexton DJ, Dimmock JR, Mutus B (1993) A spectrophotometric glutathione S-transferase assay displaying alpha-class selectivity utilizing 1-p-chlorophenyl-4, 4-dimethyl-5-diethylamino-1-penten-3-one hydrobromide. Biochem Cell Biol 71:98–101

    Article  PubMed  CAS  Google Scholar 

  20. Durak I, Yurtarslanl Z, Canbolat O, Akyol O (1993) A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clin Chim Acta 214:103–104

    Article  PubMed  CAS  Google Scholar 

  21. Turi S, Nemeth I, Torkos A, Saghy L, Varga I, Matkovics B, Nagy J (1997) Oxidative stress and antioxidant defense mechanism in glomerular diseases. Free Radic Biol Med 22:161–168

    Article  PubMed  CAS  Google Scholar 

  22. Perna AF, Ingrosso D, Lombardi C, Acanfora F, Satta E, Cesare CM, Violetti E, Romano MM, De Santo NG (2003) Possible mechanisms of homocysteine toxicity. Kidney Int Suppl 84:S137–S140

    Article  PubMed  CAS  Google Scholar 

  23. Wollesen F, Brattstrom L, Refsum H, Ueland PM, Berglund L, Berne C (1999) Plasma total homocysteine and cysteine in relation to glomerular filtration rate in diabetes mellitus. Kidney Int 55:1028–1035

    Article  PubMed  CAS  Google Scholar 

  24. Sinha I, Ghosh S, Dey P, Jacob J, Banerjee D (2005) Reduction of urinary thiols in nephrotic syndrome-a possible effect of free iron. Clin Chim Acta 355:91–96

    Article  PubMed  CAS  Google Scholar 

  25. Stepniewska J, Ciechanowski K (2005) Oxidative stress as a reason of treatment difficulties in chronic renal failure. Pol Merkuriusz Lek 19:697–700

    Google Scholar 

  26. Ichikawa I, Kiyama S, Yoshioka T (1994) Renal antioxidant enzymes: their regulation and function. Kidney Int 45:1–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Khullar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markan, S., Kohli, H.S., Sud, K. et al. Oxidative stress in primary glomerular diseases: a comparative study. Mol Cell Biochem 311, 105–110 (2008). https://doi.org/10.1007/s11010-008-9701-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9701-0

Keywords

Navigation