Skip to main content
Log in

Endothelin-1 modulates angiotensin II in the development of hypertension in fructose-fed rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Two of the most potent vasoconstrictors, endothelin-1 (ET-1) and angiotensin II (Ang II), are upregulated in fructose hypertensive rats. It is unknown whether an interrelationship exists between these peptides that may contribute to the development of fructose-induced hypertension. The objective of this study was to investigate the existence of an interaction between the endothelin and renin angiotensin systems that may play a role in the development of fructose-induced hypertension. High fructose feeding and treatment with either bosentan, a dual endothelin receptor antagonist, or with L-158,809, an angiotensin type 1 receptor antagonist, were initiated simultaneously in male Wistar rats. Systolic blood pressure, fasted plasma parameters, insulin sensitivity, plasma Ang II, and vascular ET-1-immunoreactivity were determined following 6 weeks of high fructose feeding. Rats fed with a high fructose diet exhibited insulin resistance, hyperinsulinemia, hypertriglyceridemia, hypertension, and elevated plasma Ang II. Treatment with either bosentan or L-158,809 significantly attenuated the rise in blood pressure with no effect on insulin levels or insulin sensitivity in fructose-fed rats. Bosentan treatment significantly reduced plasma Ang II levels, while L-158,809 treatment significantly increased vascular ET-1-immunoreactivity in fructose-fed rats. Thus, treatment with the endothelin receptor antagonist prevented the development of fructose-induced hypertension and decreased plasma Ang II levels. These data suggest that ET-1 contributes to the development of fructose-induced hypertension through modulation of Ang II levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607. doi:10.2337/diabetes.37.12.1595

    Article  PubMed  CAS  Google Scholar 

  2. Ginsberg HN (2000) Insulin resistance and cardiovascular disease. J Clin Invest 106:453–458. doi:10.1172/JCI10762

    Article  PubMed  CAS  Google Scholar 

  3. Reaven GM (1991) Insulin resistance, hyperinsulinemia, and hypertriglyceridemia in the etiology and clinical course of hypertension. Am J Med 90:7S–12S. doi:10.1016/0002-9343(91)90028-V

    Article  PubMed  CAS  Google Scholar 

  4. Hwang IS, Ho H, Hoffman BB, Reaven GM (1987) Fructose-induced insulin resistance and hypertension in rats. Hypertension 10:512–516

    PubMed  CAS  Google Scholar 

  5. Verma S, Bhanot S, McNeill JH (1995) Effect of chronic endothelin blockade in hyperinsulinemic hypertensive rats. Am J Physiol 269:H2017–H2021

    PubMed  CAS  Google Scholar 

  6. Verma S, Skarsgard P, Bhanot S, Yao L, Laher I, McNeill JH (1997) Reactivity of mesenteric arteries from fructose hypertensive rats to endothelin-1. Am J Hypertens 10:1010–1019. doi:10.1016/S0895-7061(97)00107-6

    Article  PubMed  CAS  Google Scholar 

  7. Juan CC, Fang VS, Hsu YP, Huang YJ, Hsia DB, Yu PC, Kwok CF, Ho LT (1998) Overexpression of vascular endothelin-1 and endothelin-A receptors in a fructose-induced hypertensive rat model. J Hypertens 16:1775–1782. doi:10.1097/00004872-199816120-00010

    Article  PubMed  CAS  Google Scholar 

  8. Erlich Y, Rosenthal T (1995) Effect of angiotensin-converting enzyme inhibitors on fructose induced hypertension and hyperinsulinaemia in rats. Clin Exp Pharmacol Physiol Suppl 22:S347–S349. doi:10.1111/j.1440-1681.1995.tb02949.x

    Article  PubMed  CAS  Google Scholar 

  9. Iyer SN, Katovich MJ (1996) Effect of acute and chronic losartan treatment on glucose tolerance and insulin sensitivity in fructose-fed rats. Am J Hypertens 9:662–668. doi:10.1016/0895-7061(96)00035-0

    Article  PubMed  CAS  Google Scholar 

  10. Higashiura K, Ura N, Takada T, Li Y, Torii T, Togashi N, Takada M, Takizawa H, Shimamoto K (2000) The effects of an angiotensin-converting enzyme inhibitor and an angiotensin II receptor antagonist on insulin resistance in fructose-fed rats. Am J Hypertens 13:290–297. doi:10.1016/S0895-7061(99)00174-0

    Article  PubMed  CAS  Google Scholar 

  11. Galipeau D, Arikawa E, Sekirov I, McNeill JH (2001) Chronic thromboxane synthase inhibition prevents fructose-induced hypertension. Hypertension 38:872–876

    PubMed  CAS  Google Scholar 

  12. Rossi GP, Sacchetto A, Cesari M, Pessina AC (1999) Interactions between endothelin-1 and the renin-angiotensin-aldosterone system. Cardiovasc Res 43:300–307. doi:10.1016/S0008-6363(99)00110-8

    Article  PubMed  CAS  Google Scholar 

  13. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415. doi:10.1038/332411a0

    Article  PubMed  CAS  Google Scholar 

  14. Widdop RE, Jones ES, Hannan RE, Gaspari TA (2003) Angiotensin AT2 receptors: cardiovascular hope or hype? Br J Pharmacol 140:809–824. doi:10.1038/sj.bjp.0705448

    Article  PubMed  CAS  Google Scholar 

  15. Yoshida K, Yasujima M, Kohzuki M, Kanazawa M, Yoshinaga K, Abe K (1992) Endothelin-1 augments pressor response to angiotensin II infusion in rats. Hypertension 20:292–297

    PubMed  CAS  Google Scholar 

  16. Ezra-Nimni O, Ezra D, Peleg E, Munter K, Rosenthal T (2003) Trandolapril and endothelin antagonist LU-135252 in the treatment of the fructose-induced hypertensive, hyperinsulinemic, hypertriglyceridemic rat. Am J Hypertens 16:324–328. doi:10.1016/S0895-7061(03)00003-7

    Article  PubMed  CAS  Google Scholar 

  17. Clozel M, Breu V, Gray GA, Kalina B, Loffler BM, Burri K, Cassal JM, Hirth G, Muller M, Neidhart W et al (1994) Pharmacological characterization of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. J Pharmacol Exp Ther 270:228–235

    PubMed  CAS  Google Scholar 

  18. Gillies LK, Werstiuk ES, Lee RM (1998) Cross-over study comparing effects of treatment with an angiotensin converting enzyme inhibitor and an angiotensin II type 1 receptor antagonist on cardiovascular changes in hypertension. J Hypertens 16:477–486. doi:10.1097/00004872-199816040-00009

    Article  PubMed  CAS  Google Scholar 

  19. Tamura T, Said S, Andersen SM, McCune SA, Mochizuki S, Gerdes AM (2002) Temporal regression of myocyte hypertrophy in hypertensive, heart failure-prone rats treated with an AT1-receptor antagonist. J Card Fail 8:43–47. doi:10.1054/jcaf.2002.32030

    Article  PubMed  CAS  Google Scholar 

  20. Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470. doi:10.2337/diacare.22.9.1462

    Article  PubMed  CAS  Google Scholar 

  21. Gomez-Alamillo C, Juncos LA, Cases A, Haas JA, Romero JC (2003) Interactions between vasoconstrictors and vasodilators in regulating hemodynamics of distinct vascular beds. Hypertension 42:831–836. doi:10.1161/01.HYP.0000088854.04562.DA

    Article  PubMed  CAS  Google Scholar 

  22. Massart PE, Hodeige DG, Van Mechelen H, Charlier AA, Ketelslegers JM, Heyndrickx GR, Donckier JE (1998) Angiotensin II and endothelin-1 receptor antagonists have cumulative hypotensive effects in canine Page hypertension. J Hypertens 16:835–841. doi:10.1097/00004872-199816060-00015

    Article  PubMed  CAS  Google Scholar 

  23. Pollock DM, Derebail VK, Yamamoto T, Pollock JS (2000) Combined effects of AT(1) and ET(A) receptor antagonists, candesartan, and A-127722 in DOCA-salt hypertensive rats. Gen Pharmacol 34:337–342. doi:10.1016/S0306-3623(00)00079-3

    Article  PubMed  CAS  Google Scholar 

  24. Ikeda T, Ohta H, Okada M, Kawai N, Nakao R, Siegl PK, Kobayashi T, Miyauchi T, Nishikibe M (2000) Antihypertensive effects of a mixed endothelin-A- and -B-receptor antagonist, J-104132, were augmented in the presence of an AT1 -receptor antagonist, MK-954. J Cardiovasc Pharmacol 36:S337–S341

    PubMed  CAS  Google Scholar 

  25. Bohlender J, Gerbaulet S, Kramer J, Gross M, Kirchengast M, Dietz R (2000) Synergistic effects of AT(1) and ET(A) receptor blockade in a transgenic, angiotensin II-dependent, rat model. Hypertension 35:992–997

    PubMed  CAS  Google Scholar 

  26. d’Uscio LV, Moreau P, Shaw S, Takase H, Barton M, Luscher TF (1997) Effects of chronic ETA-receptor blockade in angiotensin II-induced hypertension. Hypertension 29:435–441

    PubMed  CAS  Google Scholar 

  27. Herizi A, Jover B, Bouriquet N, Mimran A (1998) Prevention of the cardiovascular and renal effects of angiotensin II by endothelin blockade. Hypertension 31:10–14

    PubMed  CAS  Google Scholar 

  28. Mortensen LH, Fink GD (1992) Captopril prevents chronic hypertension produced by infusion of endothelin-1 in rats. Hypertension 19:676–680

    PubMed  CAS  Google Scholar 

  29. Jiang J, Tran L, Vasudevan H, Xia Z, Yuen VG, McNeill JH (2007) Endothelin-1 blockade prevents COX2 induction and TXA2 production in the fructose hypertensive rat. Can J Physiol Pharmacol 85:422–429. doi:10.1139/Y06-088

    Article  PubMed  CAS  Google Scholar 

  30. Lariviere R, Moreau C, Rodrigue ME, Lebel M (2004) Thromboxane blockade reduces blood pressure and progression of renal failure independent of endothelin-1 in uremic rats. Prostaglandins Leukot Essent Fatty Acids 71:103–109. doi:10.1016/j.plefa.2003.12.021

    Article  PubMed  CAS  Google Scholar 

  31. Pollock DM (2005) Endothelin, angiotensin, and oxidative stress in hypertension. Hypertension 45:477–480. doi:10.1161/01.HYP.0000158262.11935.d0

    Article  PubMed  CAS  Google Scholar 

  32. Callera GE, Touyz RM, Teixeira SA, Muscara MN, Carvalho MH, Fortes ZB, Nigro D, Schiffrin EL, Tostes RC (2003) ETA receptor blockade decreases vascular superoxide generation in DOCA-salt hypertension. Hypertension 42:811–817. doi:10.1161/01.HYP.0000088363.65943.6C

    Article  PubMed  CAS  Google Scholar 

  33. Callera GE, Tostes RC, Yogi A, Montezano AC, Touyz RM (2006) Endothelin-1-induced oxidative stress in DOCA-salt hypertension involves NADPH-oxidase-independent mechanisms. Clin Sci (Lond) 110:243–253. doi:10.1042/CS20050307

    Article  CAS  Google Scholar 

  34. Delbosc S, Paizanis E, Magous R, Araiz C, Dimo T, Cristol JP, Cros G, Azay J (2005) Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis 179:43–49. doi:10.1016/j.atherosclerosis.2004.10.018

    Article  PubMed  CAS  Google Scholar 

  35. Si X, Webb RC, Richey JM (1999) Bezafibrate, an anti-hypertriglyceridemic drug, attenuates vascular hyperresponsiveness and elevated blood pressure in fructose-induced hypertensive rats. Can J Physiol Pharmacol 77:755–762. doi:10.1139/cjpp-77-10-755

    Article  PubMed  CAS  Google Scholar 

  36. Navarro-Cid J, Maeso R, Perez-Vizcaino F, Cachofeiro V, Ruilope LM, Tamargo J, Lahera V (1995) Effects of losartan on blood pressure, metabolic alterations, and vascular reactivity in the fructose-induced hypertensive rat. Hypertension 26:1074–1078

    PubMed  CAS  Google Scholar 

  37. Chen S, Noguchi Y, Izumida T, Tatebe J, Katayama S (1996) A comparison of the hypotensive and hypoglycaemic actions of an angiotensin converting enzyme inhibitor, an AT1a antagonist and troglitazone. J Hypertens 14:1325–1330. doi:10.1097/00004872-199611000-00011

    Article  PubMed  CAS  Google Scholar 

  38. Galipeau D, Verma S, McNeill JH (2002) Female rats are protected against fructose-induced changes in metabolism and blood pressure. Am J Physiol Heart Circ Physiol 283:H2478–H2484

    PubMed  CAS  Google Scholar 

  39. Fujioka Y, Masai M, Tsuboi S, Okumura T, Morimoto S, Tsujino T, Ohyanagi M, Iwasaki T (2003) Troglitazone reduces activity of the Na+/H+ exchanger in fructose-fed borderline hypertensive rats. Hypertens Res 26:111–116. doi:10.1291/hypres.26.111

    Article  PubMed  CAS  Google Scholar 

  40. Barton M, Carmona R, Ortmann J, Krieger JE, Traupe T (2003) Obesity-associated activation of angiotensin and endothelin in the cardiovascular system. Int J Biochem Cell Biol 35:826–837. doi:10.1016/S1357-2725(02)00307-2

    Article  PubMed  CAS  Google Scholar 

  41. Barton M, Carmona R, Krieger JE, Goettsch W, Morawietz H, d’Uscio LV, Lattmann T, Luscher TF, Shaw S (2000) Endothelin regulates angiotensin-converting enzyme in the mouse kidney. J Cardiovasc Pharmacol 36:S244–S247

    PubMed  CAS  Google Scholar 

  42. Nussdorfer GG, Rossi GP, Belloni AS (1997) The role of endothelins in the paracrine control of the secretion and growth of the adrenal cortex. Int Rev Cytol 171:267–308. doi:10.1016/S0074-7696(08)62590-5

    Article  PubMed  CAS  Google Scholar 

  43. Sung CP, Arleth AJ, Storer BL, Ohlstein EH (1994) Angiotensin type 1 receptors mediate smooth muscle proliferation and endothelin biosynthesis in rat vascular smooth muscle. J Pharmacol Exp Ther 271:429–437

    PubMed  CAS  Google Scholar 

  44. Emori T, Hirata Y, Ohta K, Shichiri M, Marumo F (1989) Secretory mechanism of immunoreactive endothelin in cultured bovine endothelial cells. Biochem Biophys Res Commun 160:93–100. doi:10.1016/0006-291X(89)91625-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. G Kargacin, U Kumar, and L Marzban for consultation in the immunohistochemistry and Dr. CB Verchere for use of the microscope. Thanks to Drs. M Clozel and M Iglarz from Actelion Pharmaceuticals Ltd. and Dr. R Schwartz from Merck Research Laboratories for the generous gift of bosentan and L-158,809, respectively. The technical assistance of Dr. L Yao, P Rajput, K Potter, and VG Yuen is gratefully acknowledged. This project was supported by the Heart and Stroke Foundation of British Columbia and Yukon. LTT was a recipient of a Graduate Research Scholarship in Pharmacy from the Health Research Foundation of Canada’s Research-Based Pharmaceutical Companies and the Canadian Institute for Health Research and a Pacific Century Graduate Scholarship from the University of British Columbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. McNeill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, L.T., MacLeod, K.M. & McNeill, J.H. Endothelin-1 modulates angiotensin II in the development of hypertension in fructose-fed rats. Mol Cell Biochem 325, 89–97 (2009). https://doi.org/10.1007/s11010-008-0023-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-0023-z

Keywords

Navigation