Skip to main content
Log in

Hippocalcin, new Ca2+ sensor of a ROS-GC subfamily member, ONE-GC, membrane guanylate cyclase transduction system

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hippocalcin is a member of the neuronal Ca2+ sensor protein family. Among its many biochemical functions, its established physiological function is that via neuronal apoptosis inhibitory protein it protects the neurons from Ca2+-induced cell death. The precise biochemical mechanism/s, through which hippocalcin functions, is not clear. In the present study, a new mechanism by which it functions is defined. The bovine form of hippocalcin (BovHpca) native to the hippocampus has been purified, sequenced, cloned, and studied. The findings show that there is the evolutionary conservation of its structure. It is a Ca2+-sensor of a variant form of the ROS-GC subfamily of membrane guanylate cyclases, ONE-GC. It senses physiological increments of Ca2+ with a K1/2 of 0.5 µM and stimulates ONE-GC or ONE-GC-like membrane guanylate cyclase. The Hpca-modulated ONE-GC-like transduction system exists in the hippocampal neurons. And hippocalcin-modulated ONE-GC transduction system exists in the olfactory receptor neuroepithelium. The Hpca-gene knock out studies demonstrate that the portion of this is about 30% of the total membrane guanylate cyclase transduction system. The findings establish Hpca as a new Ca2+ sensor modulator of the ROS-GC membrane guanylate cyclase transduction subfamily. They support the concept on universality of the presence and operation of the ROS-GC transduction system in the sensory and sensory-linked neurons. They validate that the ROS-GC transduction system exists in multiple forms. And they provide an additional mechanism by which ROS-GC subfamily acts as a transducer of the Ca2+ signals originating in the neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DTT:

1,4-Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethylene glycol bis (2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

GCAP:

Guanylate cyclase activating protein

HEPES:

1-Piperazineethane sulfonic acid, 4-(2-hydroxyethyl)-monosodium salt

ONE-GC:

Olfactory neuroepithelial membrane guanylate cyclase

PMSF:

Phenylmethylsulphonylfluoride

ROS-GC:

Rod outer segment membrane guanylate cyclase

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Sharma RK (2002) Evolution of the membrane guanylate cyclase transduction system. Mol Cell Biochem 230:3–30. doi:10.1023/A:1014280410459

    Article  PubMed  CAS  Google Scholar 

  2. Sharma RK, Duda T, Venkataraman V, Koch K-W (2004) Calcium-modulated membrane guanylate cyclase, ROS-GC transduction machinery in sensory neurons: a universal concept. Curr Top Biochem Res 6:111–144

    CAS  Google Scholar 

  3. Duda T, Sharma RK (2008) ONE-GC membrane guanylate cyclase, a trimodal odorant signal transducer. Biochem Biophys Res Commun 367:440–445. doi:10.1016/j.bbrc.2007.12.153

    Article  PubMed  CAS  Google Scholar 

  4. Sharma RK, Duda T (2006) Calcium sensor neurocalcin δ-modulated ROS-GC transduction machinery in the retinal and olfactory neurons. Calcium Binding Proteins 1:7–11

    CAS  Google Scholar 

  5. Palczewski K, Sokal I, Baehr W (2004) Guanylate cyclase-activating proteins: structure, function, and diversity. Biochem Biophys Res Commun 322:1123–1130. doi:10.1016/j.bbrc.2004.07.122

    Article  PubMed  CAS  Google Scholar 

  6. Imanishi Y, Li N, Sokal I, Sowa ME, Lichtarge O, Wensel TG, Saperstein DA, Baehr W, Palczewski K (2002) Characterization of retinal guanylate cyclase-activating protein 3 (GCAP3) from zebrafish to man. Eur J Neurosci 15:63–78. doi:10.1046/j.0953-816x.2001.01835.x

    Article  PubMed  Google Scholar 

  7. Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I, Hurley JB (1995) Cloning, sequencing, and expression of a 24-kDa Ca2+-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem 270:25200–25206. doi:10.1074/jbc.270.42.25200

    Article  PubMed  CAS  Google Scholar 

  8. Lowe DG, Dizhoor AM, Liu K, Gu Q, Spencer M, Laura R, Lu L, Hurley JB (1995) Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. Proc Natl Acad Sci USA 92:5535–9553. doi:10.1073/pnas.92.12.5535

    Article  PubMed  CAS  Google Scholar 

  9. Dizhoor AM, Lowe DG, Olshevskaya EV, Laura RP, Hurley JB (1994) The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 12:1345–1352. doi:10.1016/0896-6273(94)90449-9

    Article  PubMed  CAS  Google Scholar 

  10. Duda T, Goraczniak R, Surgucheva I, Rudnicka-Nawrot M, Gorczyca WA, Palczewski K, Sitaramayya A, Baehr W, Sharma RK (1996) Calcium modulation of bovine photoreceptor guanylate cyclase. Biochemistry 35:8478–8482. doi:10.1021/bi960752z

    Article  PubMed  CAS  Google Scholar 

  11. Duda T, Venkataraman V, Krishnan A, Nagele RG, Sharma RK (2001) Negatively calcium-modulated membrane guanylate cyclase signaling system in the rat olfactory bulb. Biochemistry 40:4654–4662. doi:10.1021/bi0027985

    Article  PubMed  CAS  Google Scholar 

  12. Venkataraman V, Nagele R, Duda T, Sharma RK (2000) Rod outer segment membrane guanylate cyclase type 1-linked stimulatory and inhibitory calcium signaling systems in the pineal gland: biochemical, molecular, and immunohistochemical evidence. Biochemistry 39:6042–6052. doi:10.1021/bi9929960

    Article  PubMed  CAS  Google Scholar 

  13. Duda T, Koch K-W, Venkataraman V, Lange C, Beyermann M, Sharma RK (2002) Ca(2+) sensor S100beta-modulated sites of membrane guanylate cyclase in the photoreceptor-bipolar synapse. EMBO J 21:2547–2556. doi:10.1093/emboj/21.11.2547

    Article  PubMed  CAS  Google Scholar 

  14. Duda T, Sharma RK (2004) S100B-modulated Ca2+-dependent ROS-GC1 transduction machinery in the gustatory epithelium: a new mechanism in gustatory transduction. FEBS Lett 577:393–398. doi:10.1016/j.febslet.2004.09.089

    Article  PubMed  CAS  Google Scholar 

  15. Krishnan A, Venkataraman V, Fik-Rymarkiewicz E, Duda T, Sharma RK (2004) Structural, biochemical, and functional characterization of the calcium sensor neurocalcin delta in the inner retinal neurons and its linkage with the rod outer segment membrane guanylate cyclase transduction system. Biochemistry 43:2708–2723. doi:10.1021/bi035631v

    Article  PubMed  CAS  Google Scholar 

  16. Duda T, Jankowska A, Venkataraman V, Nagele R, Sharma RK (2001) A novel calcium-regulated membrane guanylate cyclase transduction system in the olfactory neuroepithelium. Biochemistry 40:12067–12077. doi:10.1021/bi0108406

    Article  PubMed  CAS  Google Scholar 

  17. Fik-Rymarkiewicz E, Duda T, Sharma RK (2006) Novel frequenin-modulated Ca2+-signaling membrane guanylate cyclase (ROS-GC) transduction pathway in bovine hippocampus. Mol Cell Biochem 291:187–204. doi:10.1007/s11010-006-9215-6

    Article  PubMed  CAS  Google Scholar 

  18. Duda T, Krishnan R, Sharma RK (2006) GCAP1: antithetical calcium sensor of ROS-GC transduction machinery. Calcium Binding Proteins 1:102–107

    Google Scholar 

  19. Kobayashi M, Takamatsu K, Saitoh S, Miura M, Noguchi T (1992) Molecular cloning of Hpca, a novel calcium-binding protein of the recoverin family exclusively expressed in hippocampus. Biochem Biophys Res Commun 189:511–517. Erratum in: Biochem Biophys Res Commun 196:1017 (1993). doi:10.1016/0006-291X(92)91587-G

    Google Scholar 

  20. Takamatsu K, Kobayashi M, Saitoh S, Fujishiro M, Noguchi T (1994) Molecular cloning of human hippocalcin cDNA and chromosomal mapping of its gene. Biochem Biophys Res Commun 200:606–611. doi:10.1006/bbrc.1994.1491

    Article  PubMed  CAS  Google Scholar 

  21. Masaki T, Sakai E, Furuta Y, Kobayashi M, Takamatsu K (1998) Genomic structure and chromosomal mapping of the human and mouse hippocalcin genes. Gene 225:117–124. doi:10.1016/S0378-1119(98)00526-5

    Article  PubMed  CAS  Google Scholar 

  22. Brooks SP, Storey KB (1992) Bound and determined: a computer program for making buffers of defined ion concentrations. Anal Biochem 201:119–126. doi:10.1016/0003-2697(92)90183-8

    Article  PubMed  CAS  Google Scholar 

  23. Nambi P, Aiyar NV, Sharma RK (1982) Adrenocorticotropin-dependent particulate guanylate cyclase in rat adrenal and adrenocortical carcinoma: comparison of its properties with soluble guanylate cyclase and its relationship with ACTH-induced steroidogenesis. Arch Biochem Biophys 217:638–646. doi:10.1016/0003-9861(82)90545-8

    Article  PubMed  CAS  Google Scholar 

  24. Kobayashi M, Masaki T, Hori K, Masuo Y, Miyamoto M, Tsubokawa H, Noguchi H, Nomura M, Takamatsu K (2005) Hippocalcin-deficient mice display a defect in cAMP response element-binding protein activation associated with impaired spatial and associative memory. Neuroscience 133:471–484. doi:10.1016/j.neuroscience.2005.02.034

    Article  PubMed  CAS  Google Scholar 

  25. Zozulya S, Stryer L (1992) Calcium-myristoyl protein switch. Proc Natl Acad Sci USA 89:11569–11573. doi:10.1073/pnas.89.23.11569

    Article  PubMed  CAS  Google Scholar 

  26. Ladant D (1995) Calcium and membrane binding properties of bovine neurocalcin delta expressed in Escherichia coli. J Biol Chem 270:3179–3185

    PubMed  CAS  Google Scholar 

  27. McFerran BW, Weiss JL, Burgoyne RD (1999) Neuronal Ca(2+) sensor 1. Characterization of the myristoylated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca(2+)-independent membrane association, and interaction with binding proteins, suggesting a role in rapid Ca(2+) signal transduction. J Biol Chem 274:30258–30265. doi:10.1074/jbc.274.42.30258

    Article  PubMed  CAS  Google Scholar 

  28. Kobayashi M, Takamatsu K, Saitoh S, Noguchi T (1993) Myristoylation of hippocalcin is linked to its calcium-dependent membrane association properties. J Biol Chem 268:18898–18904

    PubMed  CAS  Google Scholar 

  29. O’Callaghan DW, Ivings L, Weiss JL, Ashby MC, Tepikin AV, Burgoyne RD (2002) Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+ signal transduction. J Biol Chem 277:14227–14237. doi:10.1074/jbc.M111750200

    Article  PubMed  CAS  Google Scholar 

  30. O’Callaghan DW, Tepikin AV, Burgoyne RD (2003) Dynamics and calcium sensitivity of the Ca2+/myristoyl switch protein hippocalcin in living cells. J Cell Biol 163:715–721. doi:10.1083/jcb.200306042

    Article  PubMed  CAS  Google Scholar 

  31. Caenepeel S, Charydczak G, Sudarsanam S, Hunter T, Manning G (2004) The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci USA 101:11707–11712. doi:10.1073/pnas.0306880101

    Article  PubMed  CAS  Google Scholar 

  32. Mammen A, Simpson PJ, Nighorn A, Imanishi Y, Palczewski K, Ronnett GV, Moon C (2004) Hippocalcin in the olfactory epithelium: a mediator of second messenger signaling. Biochem Biophys Res Commun 322:1131–1139. Erratum in: Biochem Biophys Res Commun. 326:694 (2005). doi:10.1016/j.bbrc.2004.07.123

    Google Scholar 

  33. Reisert J, Yau KW, Margolis FL (2007) Olfactory marker protein modulates the cAMP kinetics of the odour-induced response in cilia of mouse olfactory receptor neurons. J Physiol 585:731–740. doi:10.1113/jphysiol.2007.142471

    Article  PubMed  CAS  Google Scholar 

  34. Bakalyar HA, Reed RR (1990) Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250:1403–1406. doi:10.1126/science.2255909

    Article  PubMed  CAS  Google Scholar 

  35. Dhallan RS, Yau KW, Schrader KA, Reed RR (1990) Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347:184–187. doi:10.1038/347184a0

    Article  PubMed  CAS  Google Scholar 

  36. Sklar PB, Anholt RR, Snyder SH (1986) The odorant-sensitive adenylate cyclase of olfactory receptor cells. Differential stimulation by distinct classes of odorants. J Biol Chem 261:15538–15543

    PubMed  CAS  Google Scholar 

  37. Juilfs DM, Fülle HJ, Zhao AZ, Houslay MD, Garbers DL, Beavo JA (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-d define a unique olfactory signal transduction pathway. Proc Natl Acad Sci USA 94:3388–3395. doi:10.1073/pnas.94.7.3388

    Article  PubMed  CAS  Google Scholar 

  38. Leinders-Zufall T, Cockerham RE, Michalakis S, Biel M, Garbers DL, Reed RR, Zufall F, Munger SD (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci USA 104:14507–14512. doi:10.1073/pnas.0704965104

    Article  PubMed  CAS  Google Scholar 

  39. Meyer MR, Angele A, Kremmer E, Kaupp UB, Muller F (2000) A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc Natl Acad Sci USA 97:10595–10600. doi:10.1073/pnas.97.19.10595

    Article  PubMed  CAS  Google Scholar 

  40. Duda T, Fik-Rymarkiewicz E, Venkataraman V, Krishnan A, Sharma RK (2004) Calcium-modulated ciliary membrane guanylate cyclase transduction machinery: constitution and operational principles. Mol Cell Biochem 267:107–122. Erratum in: Mol Cell Biochem. 273:225–226. doi:10.1023/B:MCBI.0000049372.33965.4f

    Google Scholar 

  41. Duda T, Venkataraman V, Sharma RK (2007) Vision and odorant-linked neurocalcin δ-dependent Ca2+-modulated machinery: constitution and operational principles. In: Phillippov P, Koch KW (eds) Neuronal calcium sensor proteins. Nova Science Publishers, Hauppage, NY, USA, pp 91–113

Download references

Acknowledgment

This research was supported by USPHS awards DC 005349 (RKS) and HL084584 (TD) and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sport and Technology of Japan (KT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameshwar K. Sharma.

Additional information

Anuradha Krishnan and Teresa Duda have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, A., Duda, T., Pertzev, A. et al. Hippocalcin, new Ca2+ sensor of a ROS-GC subfamily member, ONE-GC, membrane guanylate cyclase transduction system. Mol Cell Biochem 325, 1–14 (2009). https://doi.org/10.1007/s11010-008-0015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-0015-z

Keywords

Navigation