Skip to main content
Log in

Diet-induced alterations in intestinal and extrahepatic lipid metabolism in liver fatty acid binding protein knockout mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Liver fatty acid binding protein (L-FABP) is highly expressed in both enterocytes and hepatocytes and binds multiple ligands, including saturated (SFA), unsaturated fatty acids (PUFA), and cholesterol. L-fabp −/− mice were protected against obesity and hepatic steatosis on a high saturated fat (SF), high cholesterol “Western” diet and manifested a similar phenotype when fed with a high SF, low cholesterol diet. There were no significant differences in fecal fat content or food consumption between the genotypes, and fatty acid (FA) oxidation was reduced, rather than increased, in SF-fed L-fabp −/− mice as evidenced by decreased heat production and serum ketones. In contrast to mice fed with a SF diet, L-fabp −/− mice fed with a high PUFA diet were not protected against obesity and hepatic steatosis. These observations together suggest that L-fabp −/− mice exhibit a specific defect in the metabolism of SFA, possibly reflecting altered kinetics of FA utilization. In support of this possibility, microarray analysis of muscle from Western diet-fed mice revealed alterations in genes regulating glucose uptake and FA synthesis. In addition, intestinal cholesterol absorption was decreased in L-fabp −/− mice. On the other hand, and in striking contrast to other reports, female L-fabp −/− mice fed with low fat, high cholesterol diets gained slightly less weight than control mice, with minor reductions in hepatic triglyceride content. Together these data indicate a role for L-FABP in intestinal trafficking of both SFA and cholesterol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chmurzynska A (2006) The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet 47:39–48

    PubMed  Google Scholar 

  2. Cistola DP, Sacchettini JC, Banaszak LJ et al (1989) Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed in Escherichia coli. A comparative 13C NMR study. J Biol Chem 264:2700–2710

    PubMed  CAS  Google Scholar 

  3. Cistola DP, Sacchettini JC, Gordon JI (1990) 13C NMR studies of fatty acid-protein interactions: comparison of homologous fatty acid-binding proteins produced in the intestinal epithelium. Mol Cell Biochem 98:101–110. doi:10.1007/BF00231373

    Article  PubMed  CAS  Google Scholar 

  4. Thompson J, Winter N, Terwey D et al (1997) The crystal structure of the liver fatty acid-binding protein. A complex with two bound oleates. J Biol Chem 272:7140–7150. doi:10.1074/jbc.272.11.7140

    Article  PubMed  CAS  Google Scholar 

  5. Smith AJ, Thompson BR, Sanders MA et al (2007) Interaction of the adipocyte fatty acid-binding protein with the hormone-sensitive lipase: regulation by fatty acids and phosphorylation. J Biol Chem 282:32424–32432. doi:10.1074/jbc.M703730200

    Article  PubMed  CAS  Google Scholar 

  6. Gordon JI, Elshourbagy N, Lowe JB et al (1985) Tissue specific expression and developmental regulation of two genes coding for rat fatty acid binding proteins. J Biol Chem 260:1995–1998

    PubMed  CAS  Google Scholar 

  7. Lowe JB, Sacchettini JC, Laposata M et al (1987) Expression of rat intestinal fatty acid-binding protein in Escherichia coli: purification and comparison of ligand binding characteristics with that of Escherichia coli-derived rat liver fatty acid-binding protein. J Biol Chem 262:5931–5937

    PubMed  CAS  Google Scholar 

  8. Nemecz G, Hubbell T, Jefferson JR et al (1991) Interaction of fatty acids with recombinant rat intestinal and liver fatty acid-binding proteins. Arch Biochem Biophys 286:300–309. doi:10.1016/0003-9861(91)90044-J

    Article  PubMed  CAS  Google Scholar 

  9. Thumser AE, Wilton DC (1996) The binding of cholesterol and bile salts to recombinant rat liver fatty acid-binding protein. Biochem J 320(Pt 3):729–733

    Google Scholar 

  10. Haunerland N, Jagschies G, Schulenberg H et al (1984) Fatty-acid-binding proteins: occurrence of two fatty-acid-binding proteins in bovine liver cytosol and their binding of fatty acids, cholesterol, and other lipophilic ligands. Hoppe Seylers Z Physiol Chem 365:365–376

    PubMed  CAS  Google Scholar 

  11. Wolfrum C, Ellinghaus P, Fobker M et al (1999) Phytanic acid is ligand and transcriptional activator of murine liver fatty acid binding protein. J Lipid Res 40:708–714

    PubMed  CAS  Google Scholar 

  12. Martin GG, Huang H, Atshaves BP et al (2003) Ablation of the liver fatty acid binding protein gene decreases fatty acyl CoA binding capacity and alters fatty acyl CoA pool distribution in mouse liver. Biochem 42:11520–11532. doi:10.1021/bi0346749

    Article  CAS  Google Scholar 

  13. Woodford JK, Behnke WD, Schroeder F (1995) Liver fatty acid binding protein enhances sterol transfer by membrane interaction. Mol Cell Biochem 152:51–62

    PubMed  CAS  Google Scholar 

  14. Nemecz G, Schroeder F (1991) Selective binding of cholesterol by recombinant fatty acid binding proteins. J Biol Chem 266:17180–17186

    PubMed  CAS  Google Scholar 

  15. Luxon BA, Milliano MT, Weisiger RA (2000) Induction of hepatic cytosolic fatty acid binding protein with clofibrate accelerates both membrane and cytoplasmic transport of palmitate. Biochim Biophys Acta 1487:309–318

    PubMed  CAS  Google Scholar 

  16. Murphy EJ (1998) L-FABP and I-FABP expression increase NBD-stearate uptake and cytoplasmic diffusion in L cells. Am J Physiol 275:G244–G249

    PubMed  CAS  Google Scholar 

  17. Wolfrum C, Buhlmann C, Rolf B et al (1999) Variation of liver-type fatty acid binding protein content in the human hepatoma cell line HepG2 by peroxisome proliferators and antisense RNA affects the rate of fatty acid uptake. Biochim Biophys Acta 1437:194–201

    PubMed  CAS  Google Scholar 

  18. Newberry EP, Xie Y, Kennedy S et al (2003) Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid-binding protein gene. J Biol Chem 278:51664–51672. doi:10.1074/jbc.M309377200

    Article  PubMed  CAS  Google Scholar 

  19. Martin GG, Atshaves BP, McIntosh AL et al (2006) Liver fatty acid binding protein gene ablation potentiates hepatic cholesterol accumulation in cholesterol-fed female mice. Am J Physiol Gastrointest Liver Physiol 290:G36–G48. doi:10.1152/ajpgi.00510.2004

    Article  PubMed  CAS  Google Scholar 

  20. Newberry EP, Xie Y, Kennedy SM et al (2006) Protection against Western diet-induced obesity and hepatic steatosis in liver fatty acid-binding protein knockout mice. Hepatology 44:1191–1205. doi:10.1002/hep.21369

    Article  PubMed  CAS  Google Scholar 

  21. Newberry EP, Kennedy SM, Xie Y et al (2007) Diet-induced obesity and hepatic steatosis in L-FABP−/− mice is abrogated with saturated but not polyunsaturated fat feeding and attenuated following cholesterol supplementation. Am J Physiol Gastrointest Liver Physiol 294:G307–G314. doi:10.1152/ajpgi.00377.2007

    Article  PubMed  Google Scholar 

  22. Martin GG, Danneberg H, Kumar LS et al (2003) Decreased liver fatty acid binding capacity and altered liver lipid distribution in mice lacking the liver fatty acid-binding protein gene. J Biol Chem 278:21429–21438. doi:10.1074/jbc.M300287200

    Article  PubMed  CAS  Google Scholar 

  23. Xie Y, Newberry EP, Young SG et al (2006) Compensatory increase in hepatic lipogenesis in mice with conditional intestine-specific Mttp deficiency. J Biol Chem 281:4075–4086. doi:10.1074/jbc.M510622200

    Article  PubMed  CAS  Google Scholar 

  24. Wang DQ, Paigen B, Carey MC (2001) Genetic factors at the enterocyte level account for variations in intestinal cholesterol absorption efficiency among inbred strains of mice. J Lipid Res 42:1820–1830

    PubMed  CAS  Google Scholar 

  25. Carlier H, Bernard A, Caselli C (1991) Digestion and absorption of polyunsaturated fatty acids. Reprod Nutr Dev 31:475–500. doi:10.1051/rnd:19910501

    Article  PubMed  CAS  Google Scholar 

  26. Penner G, Gang G, Sun X et al (2002) C/EBP DNA-binding activity is upregulated by a glucocorticoid-dependent mechanism in septic muscle. Am J Physiol Regul Integr Comp Physiol 282:R439–R444

    PubMed  CAS  Google Scholar 

  27. Menconi M, Fareed M, O’Neal P et al (2007) Role of glucocorticoids in the molecular regulation of muscle wasting. Crit Care Med 35:S602–S608. doi:10.1097/01.CCM.0000279194.11328.77

    Article  PubMed  CAS  Google Scholar 

  28. Yang H, Mammen J, Wei W et al (2005) Expression and activity of C/EBPbeta and delta are upregulated by dexamethasone in skeletal muscle. J Cell Physiol 204:219–226. doi:10.1002/jcp.20278

    Article  PubMed  CAS  Google Scholar 

  29. Neeli I, Siddiqi SA, Siddiqi S et al (2007) Liver fatty acid-binding protein initiates budding of pre-chylomicron transport vesicles from intestinal endoplasmic reticulum. J Biol Chem 282:17974–17984. doi:10.1074/jbc.M610765200

    Article  PubMed  CAS  Google Scholar 

  30. Schwarz M, Davis DL, Vick BR et al (2001) Genetic analysis of intestinal cholesterol absorption in inbred mice. J Lipid Res 42:1801–1811

    PubMed  CAS  Google Scholar 

  31. Keelan M, Hui DY, Wild G et al (2000) Variability of the intestinal uptake of lipids is genetically determined in mice. Lipids 35:833–837. doi:10.1007/S11745-000-0592-0

    Article  PubMed  CAS  Google Scholar 

  32. Taylor BA, Wnek C, Schroeder D et al (2001) Multiple obesity QTLs identified in an intercross between the NZO (New Zealand obese) and the SM (small) mouse strains. Mamm Genome 12:95–103. doi:10.1007/s003350010254

    Article  PubMed  CAS  Google Scholar 

  33. Anunciado RV, Ohno T, Mori M et al (2000) Distribution of body weight, blood insulin and lipid levels in the SMXA recombinant inbred strains and the QTL analysis. Exp Anim 49:217–224. doi:10.1538/expanim.49.217

    Article  PubMed  CAS  Google Scholar 

  34. Suto J, Matsuura S, Imamura K et al (1998) Genetics of obesity in KK mouse and effects of A(y) allele on quantitative regulation. Mamm Genome 9:506–510. doi:10.1007/s003359900809

    Article  PubMed  CAS  Google Scholar 

  35. Ueda H, Ikegami H, Kawaguchi Y et al (1999) Genetic analysis of late-onset type 2 diabetes in a mouse model of human complex trait. Diabetes 48:1168–1174. doi:10.2337/diabetes.48.5.1168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIH to NOD (HL-38180, DK-56260, and DK-52574, particularly the Genomics and Microarray Core). The authors acknowledge Trey Coleman and the Clinical Nutrition Research Unit for assistance with the energy consumption studies (NIDDK P30 DK-56341). The authors acknowledge the Diabetes Research Training Center Immunoassay Core for help with serum analysis (P60 DK-020579-30). The authors are grateful to Valerie Blanc, Kim Delaney, Britni Sternard, and Susie Stanley for useful discussions throughout the course of these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas O. Davidson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newberry, E.P., Kennedy, S.M., Xie, Y. et al. Diet-induced alterations in intestinal and extrahepatic lipid metabolism in liver fatty acid binding protein knockout mice. Mol Cell Biochem 326, 79–86 (2009). https://doi.org/10.1007/s11010-008-0002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-0002-4

Keywords

Navigation