Skip to main content

Advertisement

Log in

Control of cell proliferation via elevated NEDD8 conjugation in oral squamous cell carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A prominent feature of all cancers including oral carcinoma is an abnormality in cellular proliferation. Neural precursor cell-expressed developmentally down-regulated 8 (NEDD8) is a ubiquitin-like protein exerting its biological function through covalent ligation to a family of cullin proteins, which act as a component of the Skp1, cullin, and F-box protein complex that plays a critical role in the regulation of cell cycle. Using Western blot analysis, an increase in NEDD8 conjugation was observed in all highly proliferative cells, including immortalized normal oral keratinocyte (NOK), oral-derived carcinoma (KB, HSC4), and several types of human carcinoma cell lines as compared to normal human gingival fibroblast. The level of NEDD8 conjugation was proportionally dependent on the concentration of serum in culture medium, which also affected proliferation status of oral squamous cell carcinoma. NEDD8 conjugation was required for proliferation of the carcinoma cell since the transfection of dominant negative Ubc12 (Ubc12C111S) could prolong the rate of proliferation. Taken together, up-regulation of the NEDD8 conjugation is an essential requirement for the enhancement of proliferation of oral carcinoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kumar S, Yoshida Y, Noda M (1993) Cloning of a cDNA which encodes a novel ubiquitin-like protein. Biochem Biophys Res Commun 195:393–399

    Article  PubMed  CAS  Google Scholar 

  2. Goldstein G, Scheid M, Hammerling U et al (1975) Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci USA 72:11–15

    Article  PubMed  CAS  Google Scholar 

  3. Pickart CM (2001) Mechanism underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  PubMed  CAS  Google Scholar 

  4. Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Ann Rev Biochem 61:761–807

    Article  PubMed  CAS  Google Scholar 

  5. Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Ann Rev Genet 30:405–439

    Article  PubMed  CAS  Google Scholar 

  6. Yeh ET, Gong L, Kamitani T (2000) Ubiquitin-like proteins: new wines in new bottles. Gene 248:1–14

    Article  PubMed  CAS  Google Scholar 

  7. Bohnsack RN, Haas AL (2003) Conservation in the mechanism of Nedd8 activation by the human AppBp1-Uba3 heterodimer. J Biol Chem 278:26823–26830

    Article  PubMed  CAS  Google Scholar 

  8. Gong L, Yeh ET (1999) Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J Biol Chem 274:12036–12042

    Article  PubMed  CAS  Google Scholar 

  9. Osaka F, Kawasaki H, Aida N et al (1998) A new NEDD8-ligating system for cullin-4A. Genes Dev 12:2263–2268

    PubMed  CAS  Google Scholar 

  10. Hori T, Osaka F, Chiba T et al (1999) Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18:6829–6834

    Article  PubMed  CAS  Google Scholar 

  11. Kipreos ET, Lander LE, Wing JP et al (1996) Cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell 85:829–839

    Article  PubMed  CAS  Google Scholar 

  12. Wada H, Yeh ET, Kamitani T (1999) Identification of NEDD8-conjugation site in human cullin-2. Biochem Biophys Res Commun 257:100–105

    Article  PubMed  CAS  Google Scholar 

  13. Zheng N, Wang P, Jeffrey PD et al (2002) Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416:703–709

    Article  PubMed  CAS  Google Scholar 

  14. Patton EE, Willems AR, Sa D et al (1998) Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box protein complexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev 12:692–705

    PubMed  CAS  Google Scholar 

  15. Kawakami T, Chiba T, Suzuki T et al (2001) NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J 20:4003–4012

    Article  PubMed  CAS  Google Scholar 

  16. Sakata E, Yamaguchi Y, Miyauchi Y et al (2007) Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity. Nat Struct Mol Biol 14:167–168

    Article  PubMed  CAS  Google Scholar 

  17. Morimoto M, Nishida T, Nagayama Y et al (2003) Nedd8-modification of Cul1 is promoted by Roc1 as a Nedd8-E3 ligase and regulates its stability. Biochem Biophys Res Commun 301:392–398

    Article  PubMed  CAS  Google Scholar 

  18. Jung V, Pestka SB, Pestka S (1993) Cloning of polymerase chain reaction-generated DNA containing terminal restriction endonuclease recognition sites. Methods Enzymol 218:357–362

    Article  PubMed  CAS  Google Scholar 

  19. Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116

    Article  PubMed  CAS  Google Scholar 

  20. Kamitani T, Kito K, Nguyen HP et al (1997) Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem 272:28557–28562

    Article  PubMed  CAS  Google Scholar 

  21. Wada H, Yeh ET, Kamitani T (2000) A dominant-negative UBC12 mutant sequesters NEDD8 and inhibits NEDD8 conjugation in vivo. J Biol Chem 275:17008–17015

    Article  PubMed  CAS  Google Scholar 

  22. Brandeis M, Hunt T (1996) The proteolysis of mitotic cyclins in mammalian cells persists from the end of mitosis until the onset of s phase. EMBO J 15:5280–5289

    PubMed  CAS  Google Scholar 

  23. Covell DG, Wallqvist A, Rabow AA et al (2003) Molecular classification of cancer: unsupervised self-organizing map analysis of gene expression microarray data. Mol Cancer Ther 2:317–332

    PubMed  CAS  Google Scholar 

  24. Hasegawa S, Furukawa Y, Li M et al (2002) Genome-wide analysis of gene expression in intestinal-type gastric cancers using a complementary DNA microarray representing 23,040 genes. Cancer Res 62:7012–7017

    PubMed  CAS  Google Scholar 

  25. Dutaud D, Aubry L, Henry L et al (2002) Development and evaluation of a sandwich ELISA for quantification of the 20S proteasome in human plasma. J Immunol Methods 260:183–193

    Article  PubMed  CAS  Google Scholar 

  26. Yu ZK, Gervais JL, Zhang H (1998) Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA 95:11324–11329

    Article  PubMed  CAS  Google Scholar 

  27. Mathias N, Johnson SL, Winey M et al (1996) Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1- to-S-phase transition and identifies a conserved family of proteins. Mol Cell Biol 16:6634–6643

    PubMed  CAS  Google Scholar 

  28. O’Hagan RC, Ohh M, David G et al (2000) Myc-enhanced expression of Cul1 promotes ubiquitin-dependent proteolysis and cell cycle progression. Genes Dev 14:2185–2191

    Article  PubMed  CAS  Google Scholar 

  29. Feng H, Zhong W, Punkosdy G et al (1999) CUL-2 is required for the G1-to-S-phase transition and mitotic chromosome condensation in Caenorhabditis elegans. Nat Cell Biol 1:486–492

    Article  PubMed  CAS  Google Scholar 

  30. Singer JD, Gurian-West M, Clurman B et al (1999) Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev 13:2375–2387

    Article  PubMed  CAS  Google Scholar 

  31. Chen LC, Manjeshwar S, Lu Y et al (1998) The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers. Cancer Res 58:3677–3683

    PubMed  CAS  Google Scholar 

  32. Yasui K, Arii S, Zhao C et al (2002) TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology 35:1476–1484

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor P. Wilairat Faculty of Science, Mahidol University and Professor S.S. Twining, Medical College of Wisconsin, WI, USA for critical reading of this manuscript and Mrs. S. Korsuwannawong for assisting in statistical analysis. This work was supported by grants from Mahidol University and Faculty of Dentistry, Mahidol University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kongthawat Chairatvit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chairatvit, K., Ngamkitidechakul, C. Control of cell proliferation via elevated NEDD8 conjugation in oral squamous cell carcinoma. Mol Cell Biochem 306, 163–169 (2007). https://doi.org/10.1007/s11010-007-9566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9566-7

Keywords

Navigation