Skip to main content

Advertisement

Log in

Western array analysis of cell cycle protein changes during the hyperplastic to hypertrophic transition in heart development

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiac myocytes proliferate most rapidly during the hyperplastic phase of heart development; however, the level of cell cycle activity is drastically down regulated after birth. Further growth of the heart is achieved by hypertrophic growth of cardiac myocytes. The mechanism that controls the switch from hyperplastic proliferation to hypertrophic growth in cardiac myocytes is unknown. Understanding this fundamental mechanism of cardiac myocyte biology would be most beneficial for studies directed towards myocardial regeneration. In this study, we identified changes in the expression of proteins involved in cell cycle regulation during the hyperplastic to hypertrophic transition of cardiac myocytes. Using a high-throughput immunoblotting technique, we examined 200+ proteins in primary cultures of cardiac myocytes at different developmental time points to determine the important regulators of this transition. In addition, we also analyzed samples from an immortalized cardiac myocyte cell line to compare expression levels of cell cycle regulatory proteins to our primary cultures. Our findings by this uncovered proteomic screen identified several potential key regulatory proteins and provide insight into the important components of cardiac myocyte cell cycle regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Soonpaa MH, Field LJ (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 83:15–26

    PubMed  CAS  Google Scholar 

  2. Pasumarthi KBS, Field LJ (2002) Cardiomyhocyte cell cycle regulation. Circ Res 90:1044–1054

    Article  PubMed  CAS  Google Scholar 

  3. Field LJ (2004) Modulation of the cardiomyocyte cell cycle in genetically altered animals. Ann NY Acad Sci 1015:160–170

    Article  PubMed  CAS  Google Scholar 

  4. Armstrong MT, Lee DY, Armstrong PB (2000) Regulation of proliferation of the fetal myocardium. Dev Dyn 219:226–236

    Article  PubMed  CAS  Google Scholar 

  5. MacLellan RW, Schneider MD (2000) Genetic dissection of cardiac growth control pathways. Ann Rev Phys 62:289–319

    Article  CAS  Google Scholar 

  6. Lorenz P, Ruschpler P, Koczan D, Stiel P, Thiesen HJ (2003) From transcriptome to proteome: differentially expressed proteins identified in synovial tissue of patients suffering from rheumatoid arthritis and osteoarthritis by an initial screen with a panel of 791 antibodies. Proteomics 3:991–1002

    Article  PubMed  CAS  Google Scholar 

  7. Malakhov MP, Kim KI, Malakhova OA, Jacobs BS, Borden EC, Zhang DE (2003) High-throughput immunoclotting: ubiquitin-like protein ISG15 modifies key regulators of signal transduction. J Biol Chem 278:16608–16613

    Article  PubMed  CAS  Google Scholar 

  8. Claycomb WC, Lanson NA, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95:2979–2984

    Article  PubMed  CAS  Google Scholar 

  9. White SM, Constantin PE, Claycomb WC (2004) Cardiac physiology at the celluar level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am J Physiol Heart Circ Physiol 286: H823–H829

    Article  PubMed  CAS  Google Scholar 

  10. Beltzner CC, Pollard TD (2004) Identification of functionally important residues of Arp2/3 complex by analysis of homology models from diverse species. J Mol Biol 336:551–565

    Article  PubMed  CAS  Google Scholar 

  11. Tsujimoto Y, Tomita Y, Hoshida Y, Kono T, Oka T, Yamamoto S, Nonomura N, Okuyama A, Aozasa K (2004) Elevated expression of valosin-containing protein (p97) is associated with poor prognosis of prostate cancer. Clin Cancer Res 10:3007–3012

    Article  PubMed  CAS  Google Scholar 

  12. Kubista M, Rosner M, Miloloza A, Hofer K, Prusa AR, Kroiss R, Marton E, Hengstschlager M (2002) BRCA1 and differentiation. Mutat Res 512:165–172

    Article  PubMed  CAS  Google Scholar 

  13. Soonpaa MH, Koh GY, Pajak L, Jing S, Wang H, Franklin MT, Kim KK, Field LJ (1997) Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J Clin Invest 99:2644–2654

    Article  PubMed  CAS  Google Scholar 

  14. Busk PK, Bartkova J, Strom CC, Wulf-Andersen L, Hinrichsen R, Christoffersen TE, Latella L, Bartek J, Haunso S, Sheikh SP (2002) Involvement of cyclin D activity in left ventricle hypertrophy in vivo and in vitro. Cardiovasc Res 56:64–75

    Article  PubMed  CAS  Google Scholar 

  15. Falvella FS, Menegola E, Giavini E, Ottey M, Fidanza V, Croce CM, Hueber K, Dragani TA (2000) Expression of FHIT protein during mouse development. Anat Rec 260:208–211

    Article  PubMed  CAS  Google Scholar 

  16. Mohler PJ, Woohyum Y, Bennett V (2004) Ankyrin-B targets beta-2 spectrin to an intracellular compartment in neonatal cardiomyocytes. J Biol Chem 279:40185–40193

    Article  PubMed  CAS  Google Scholar 

  17. Townsend PA, Scarabelli TM, Davidson SM, Knight RA, Latchman DS, Stephanou A (2004) STAT-1 interacts with p53 to enhance DNA damage-induced apoptosis. J Biol Chem 279:5811–5820

    Article  PubMed  CAS  Google Scholar 

  18. Stephanou A, Scarabelli TM, Townsend PA, Bell R, Yellon D, Knight RA, Latchman DS (2002) The carboxyl-terminal activation domain of the STAT-1 transcription factor enhances ischemia/reperfusion-induced apoptosis in cardiac myocytes. FASEB J 16:1841–1843

    PubMed  CAS  Google Scholar 

  19. Walsh K, Perlman H (1997) Cell cycle exit upon myogenic differentiation. Curr Opin Genet Dev 7:597–602

    Article  PubMed  CAS  Google Scholar 

  20. Lanson NA, Egeland DB, Royals BA, Claycomb WC (2000) The MRE11-NBS1-RAD50 pathway is perturbed in SV40 large T antigen-immortalized AT-1, AT-2, and HL-1 cardiomyocytes. Nucleic Acids Res 28:2882–2892

    Article  PubMed  CAS  Google Scholar 

  21. Heidkamp MC, Scully BT, Vijayan K, Engman SJ, Szotek EL, Samarel AM (2005) PYK2 regulates SERCA2 gene expression in neonatal rat ventricular myocytes. Am J Physiol Cell Physiol. 289:C471–C482

    Article  PubMed  CAS  Google Scholar 

  22. Hirotani S, Higuchi Y, Nishida K, Nakayama H, Yamaguchi O, Hikoso S, Takeda T, Kashiwase K, Watanabe T, Asahi M, Taniike M, Tsujimoto I, Matsumura Y, Sasaki T, Hori M, Otsu K (2004) Ca(2+)-sensitive tyrosine kinase Pyk2/CAK beta-dependent signaling is essential for G-protein-coupled receptor agonist-induced hypertrophy. J Mol Cell Cardiol 36:799–807

    Article  PubMed  CAS  Google Scholar 

  23. Melendez J, Welch S, Schaefer E, Moravec CS, Avraham S, Avraham H, Sussman MA (2002) Activation of pyk2/related focal adhesion tyrosine kinase and focal adhesion kinase in cardiac remodeling. J Biol Chem 277:45203–45210

    Article  PubMed  CAS  Google Scholar 

  24. Dowell JD, Field LJ, Pasumarthi KBS (2003) Cell cycle regulation to repair the infarcted myocardium. Heart Fail Rev 8:293–303

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Goodwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, H.J., Goodwin, R.L. Western array analysis of cell cycle protein changes during the hyperplastic to hypertrophic transition in heart development. Mol Cell Biochem 303, 189–199 (2007). https://doi.org/10.1007/s11010-007-9473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9473-y

Keywords

Navigation