Skip to main content
Log in

Selenium protects the immature rat heart against ischemia/reperfusion injury

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of the study was to find out whether administration of selenium (Se) will protect the immature heart against ischemia/reperfusion.

The control pregnant rats were fed laboratory diet (0.237 mg Se/kg diet); experimental rats received 2 ppm Na2SeO3 in the drinking water from the first day of pregnancy until day 10 post partum. The concentration of Se in the serum and heart tissue was determined by activation analysis, the serum concentration of NO by chemiluminescence, cardiac concentration of lipofuscin-like pigment by fluorescence analysis. The 10 day-old hearts were perfused (Langendorff); recovery of developed force (DF) was measured after 40 min of global ischemia. In acute experiments, 10 day-old hearts were perfused with selenium (75 nmol/l) before or after global ischemia. Sensitivity to isoproterenol (ISO, pD50) was assessed as a response of DF to increasing cumulative dose.

Se supplementation elevated serum concentration of Se by 16%. Se increased ischemic tolerance (recovery of DF, 32.28 ± 2.37 vs. 41.82 ± 2.91%, P < 0.05). Similar results were obtained after acute administration of Se during post-ischemic reperfusion (32.28 ± 2.37 vs. 49.73 ± 4.40%, P < 0.01). The pre-ischemic treatment, however, attenuated the recovery (23.08 ± 3.04 vs. 32.28 ± 2.37%, P < 0.05). Moreover, Se supplementation increased the sensitivity to the inotropic effect of ISO, decreased cardiac concentration of lipofuscin-like pigment and serum concentration of NO.

Our results suggest that Se protects the immature heart against ischemia/reperfusion injury. It seems therefore, that ROS may affect the function of the neonatal heart, similarly as in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Se:

Selenium

ROS:

Radical oxygen species

I/R:

Ischemia reperfusion

DF:

Developed force

ISO:

Isoproterenol

NF-κB:

Nuclear factor-κB

cGMP:

Cyclic guanosine monophosphate

iNOS:

Inducible nitric oxide synthase

LFP:

Lipofuscin-like pigment

rfu:

Relative fluorescence unit

References

  1. Ostadal B, Ostadalova I, Dhalla NS (1999) Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev 79:635–659

    PubMed  CAS  Google Scholar 

  2. Singer D (1999) Neonatal tolerance to hypoxia: a comparative-physiological approach. Comp Biochem Physiol A Mol Integr Physiol 123:221–234

    Article  PubMed  CAS  Google Scholar 

  3. Hurtado A (1960) Some clinical aspects of life at high altitudes. Ann Intern Med 53:247–258

    PubMed  CAS  Google Scholar 

  4. Poupa O, Krofta K, Prochazka J, Turek J (1966) Acclimatization to simulated high altitude and acute cardiac necrosis. Fed Proc 25:1243–1246

    PubMed  CAS  Google Scholar 

  5. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    PubMed  CAS  Google Scholar 

  6. Ostadalova I, Ostadal B, Kolar F, Parratt JR (1998) Tolerance to ischemia and ischemic preconditioning in neonatal rat heart. J Mol Cell Cardiol 30:857–865

    Article  PubMed  CAS  Google Scholar 

  7. Ostadalova I, Ostadal B, Jarkovska D, Kolar F (2002) Ischemic preconditioning in chronically hypoxic neonatal rat heart. Pediatr Res 52:561–567

    Article  PubMed  CAS  Google Scholar 

  8. Bolli R (1998) Causative role of oxyradicals in myocardial stunning: a proven hypothesis. A brief review of the evidence demonstrating a major role of reactive oxygen species in several forms of postischemic dysfunction. Basic Res Cardiol 93:156–162

    Article  PubMed  CAS  Google Scholar 

  9. Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47:446–456

    Article  PubMed  CAS  Google Scholar 

  10. Henry TD, Archer SL, Nelson D (1993) Postischemic oxygen radical production varies with duration of ischemia. Am J Physiol 264:H1478–H1484

    PubMed  CAS  Google Scholar 

  11. Southworth R, Shattock MJ, Hearse DJ, Kelly FJ (1998) Developmental differences in superoxide production in isolated quinea-pig hearts during reperfusion. J Mol Cell cardiol 30:1391–1399

    Article  PubMed  CAS  Google Scholar 

  12. Sunde RA (1994) Intracellular glutathione peroxidases-structure, regulation, and function. In: Burk RF (ed) Selenium in biology and human health. Springer-Verlag, New York, pp. 45–78

    Google Scholar 

  13. Burk RF, Hill KE, Motley AK (2003) Selenoprotein metabolism and function: evidence for more than one function for selenoprotein. J Nutr 133(5Suppl 1):1517S–15120S

    PubMed  CAS  Google Scholar 

  14. Poltronieri R, Cevese A, Sbarbati A (1992) Protective effect of selenium in cardiac ischemia and reperfusion. Cardioscience 3:155–160

    PubMed  CAS  Google Scholar 

  15. Venardos K, Harrison G, Headrick J, Perkins A (2004) Selenium supplementation and ischemia-reperfusion injury in rats. Redox Rep 9:317–320

    Article  PubMed  CAS  Google Scholar 

  16. Pucheu S, Coudray C, Tresallet N, Favier A, de Leiris J (1995) Effect of dietary antioxidant trace element supply on cardiac tolerance to ischemia-reperfusion in the rat. J Mol Cell Cardiol 27:2303–2314

    Article  PubMed  CAS  Google Scholar 

  17. Venardos K, Ashton K, Headrick J, Perkins A (2005) Effects of dietary selenium on post-ischemic expression of antioxidant mRNA. Mol Cell Biochem 270:131–138

    Article  PubMed  CAS  Google Scholar 

  18. Turan B, Saini HK, Zhang M, Prajapati D, Elimban V, Dhalla NS (2005) Selenium improves cardiac function by attenuating the activation of NF-kappaB due to ischemia-reperfusion injury. Antioxid Redox Signal 7:1388–1397

    Article  PubMed  CAS  Google Scholar 

  19. Hollander JM, Lin KM, Scott BT, Dillmann WH (2003) Overexpression of PHGPx and HSP60/10 protects ischemia/reoxygenation injury. Free Radic Biol Med 35:742–751

    Article  PubMed  CAS  Google Scholar 

  20. Bordoni A, Biagi PL, Angeloni C, Leoncini E, Danesi F, Hrelia S (2005) Susceptibility to hypoxia/reoxygenation of aged rat cardiomyocytes and its modulation by selenium supplemenmtation. J Agric Food Chem 53:490–494

    Article  PubMed  CAS  Google Scholar 

  21. Gomez RM, Levander OA, Sterin-Borda L (2003) Reduced inotropic heart response in selenium-deficient mice relates with inducible nitric oxide synthase. Am J Physiol Heart Circ Physiol 284:H442–H448

    PubMed  CAS  Google Scholar 

  22. Ostadalova I, Babicky A, Kopoldova J (1982) Ontogenetic changes in selenite metabolism in rats. Arch Toxicol 49:247–252

    Article  PubMed  CAS  Google Scholar 

  23. Ostadalova I, Babicky A, Obenberger J (1978) Cataract induced by administration of a single dose of sodium selenite to sucklings rats. Experientia 34:222

    Article  PubMed  CAS  Google Scholar 

  24. Spallholz JE (1997) Free radical generation by selenium compounds and their prooxidant toxicity. Biomed Environ Sci 10:260–270

    PubMed  CAS  Google Scholar 

  25. Litchfield JB (1958) Blood pressure in infant rats. Physiol Zool 31:1–6

    Google Scholar 

  26. Zicha J, Kunes J, Jelinek J (1986) Experimental hypertension in young and adult animals. Hypertension 8:1096–1104

    PubMed  CAS  Google Scholar 

  27. Ostadalova I, Kolar F, Ostadal B, Rohlicek V, Rohlicek J, Prochazka J (1993) Early postnatal development of contractile performance and responsiveness to Ca2+, verapamil and ryanodine in the isolated rat heart. J Mol Cell Cardiol 25:733–740

    Article  PubMed  CAS  Google Scholar 

  28. Hampl V, Walters CL, Archer S (1996) Determination of nitric oxide by the chemiluminescence reaction with ozone In: Feelisch M, Stamler JS (eds). Methods in nitric oxide research, Wiley, Chichester, pp. 310–318

    Google Scholar 

  29. Michelakis ED, Archer SL (1998) The measurement of NO in biological systems using chemiluminiscence. In: Titheradge MA (ed) Nitric oxide protocols, Humana Press, Totowa, NJ, USA, pp. 111–127

    Google Scholar 

  30. Goldstein BD, McDonagh EM (1976) Spectrofluorescent detection of in vivo red cell lipid peroxidation in patients treated with diaminodiphenylsulfone, J Clin Investig 57:1302–1307

    Article  PubMed  CAS  Google Scholar 

  31. Wilhelm J, Herget J (1999) Hypoxia induces free radical damage to rat erythrocytes and spleen: analysis of the fluorescent end-products of lipid peroxidation, Inter J Biochem and Cell Biol 31:671–681

    Article  CAS  Google Scholar 

  32. Huang Y, Bai H, Zhang Z (1999) Mechanism of selenium protecting against free radical damages during myocardial ischemia/reperfusion in rats. Zhonghua Yi Xue Za Zhi 79:852–856

    PubMed  CAS  Google Scholar 

  33. Allen JC, Miller WJ (1981) Transfer of selenium from blood to milk in goats and noninterference of copper with selenium metabolism. J Dairy Sci 64:814–821

    Article  PubMed  CAS  Google Scholar 

  34. Enjalbert F, Lebreton P, Salat O, Schelcher F (1999) Effects of pre- or postpartum selenium supplementation on selenium status in beef cows and their calves. J Anim Sci 77:223–229

    PubMed  CAS  Google Scholar 

  35. Shattock MJ, Mukaida M, Baghai M, Awad W, Chambers DJ, Alphonso N, Austin CB, Anderson DR (2004) KATP channels and preconditioning in the neonatal heart: are they up to the job? J Mol Cell Cardiol 37:365–366

    Google Scholar 

  36. Igarashi J, Nishida M, Hoshida S, Yamashita N, Kosaka H, Hori M, Kuzuya T, Tada M (1998) Inducible nitric oxide synthase augments injury elicited by oxidative stress in rat cardiac myocytes. Am J Physiol 274:C245–252

    PubMed  CAS  Google Scholar 

  37. Das DK, Engelman RM, Flansaas D, Otani OJ (1987) Developmental profiles of protective mechanisms of heart against peroxidase injury. Basic Res Cardiol 82:36–50

    Article  PubMed  CAS  Google Scholar 

  38. Turan B, Hotomaroglu O, Kilic M, Demirel-Yilmaz E (1999) Cardiac dysfunction induced by low and high diet antioxidant levels comparing selenium and vitamin E in rats. Regul Toxicol Pharmacol 29:142–150

    Article  PubMed  CAS  Google Scholar 

  39. Kojda G, Kottenberg K (1999) Regulation of basal myocardial function by NO. Cardiovasc Res 41:514–523

    Article  PubMed  CAS  Google Scholar 

  40. Klatt P, Cacho J, Crespo MD, Herrera E, Ramos P (2000) Nitric oxide inhibits isoproterenol-stimulated adipocyte lipolysis through oxidative inactivation of the β-agonist. Biochem J 351:485–493

    Article  PubMed  CAS  Google Scholar 

  41. Kim YM, Bombeck CA, Billiar TR (1999) Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 84:253–256

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. M. Peskova for technical assistance.

This work was supported by grant No. 1M0510 of the Czech Ministry of Education, Youth and Physical Education, by grant No. AV 0Z 50110509 and by grant AV 0Z 40310501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Ostadalova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostadalova, I., Vobecky, M., Chvojkova, Z. et al. Selenium protects the immature rat heart against ischemia/reperfusion injury. Mol Cell Biochem 300, 259–267 (2007). https://doi.org/10.1007/s11010-006-9391-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9391-4

Keywords

Navigation