Skip to main content
Log in

Investigation of interleukin 1β-mediated regulation of NF-κB activation in colonic cells reveals divergence between PKB and PDK-transduced events

  • Original Paper
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Recent work has highlighted a role for PDK1 in adaptive immunity, however its contribution to innate immunity has not been addressed. We have investigated the role of PKB and PDK1 in IL-1β-induced NF-κB activation. Over-expression of either in HCT 116 and HEK 293T cells, effected a reproducible NF-κB activation. This was validated in a one-hybrid assay utilizing Gal4-RelA and Gal4-luciferase assay. N-tosyl phenylalanyl chloromethyl ketone (TPCK), wortmannin and Ly294002 inhibited IL-1β-induced NF-κB activation in both systems indicating involvement of the PI3K axis in this response. p65 (Rel A) Ser536 phosphorylation was not affected by the PI3K inhibitors but was dose-dependently attenuated by TPCK. Evaluation of IKK-associated activity using GST-p65 substrate phosphorylation in immune complex assays, revealed that whilst TPCK attenuated this, neither of the PI3K inhibitors had any effect. Furthermore whilst TPCK inhibited IL-1β-induced p65 DNA binding, this was not apparent with either of wortmannin or Ly294002. Similarly, over-expression of PDK1 but not PKB resulted in promotion of p65 DNA binding. Using a p65-S536A reporter construct, we found inhibition of only PDK1 over-expression-induced, but not PKB over-expression-induced NF-κB activation. This was supported using biochemical analysis in which immunoprecipitated IKKγ from IL-1β-activated cells was unable to phosphorylate a p65-S536A substrate, confirming this as the dominant IKK-dependent site. In further support of a dissociated response, we observed an attenuation of the Ser177/181 IKK phosphorylation by TPCK but not in response to PI3K inhibition. Our data reveals for the first time that PDK1 and PKB may differentially activate NF-κB, and that TPCK may subserve a useful anti-inflammatory function by inhibiting IKKβ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

IL-1β:

interleukin 1 beta

IL-1R:

interleukin 1 receptor

NF-κB:

nuclear factor kappa B

MyD88:

myeloid differentiation primary response gene 88

IRAK 1:

IL-1 receptor associated kinase 1

Traf 6:

TNF-receptor associated factor 6

IKK:

I kappa kinase

PKB:

protein kinase B

PDK:

phosphoinositide-dependent kinase 1

PI3K:

phosphatidylinositol 3 kinase

ILK:

integrin-linked kinase

IECs:

intestinal epithelial cells

CBP:

CREB binding protein

TAK1:

TGFβ-activated kinase

TAD:

transactivation domain

References

  1. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    Article  PubMed  CAS  Google Scholar 

  2. Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK (2000) Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 164:966–972

    PubMed  CAS  Google Scholar 

  3. Abreu MT, Vora P, Faure E, Thomas LS, Arnold ET, Arditi M (2001) Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J Immunol 167:1609–1616

    PubMed  CAS  Google Scholar 

  4. Jobin C, Sartor RB (2000) The I kappa B/NF-kappa B system: a key determinant of mucosal inflammation and protection. Am J Physiol Cell Physiol 278:C451–C462

    PubMed  CAS  Google Scholar 

  5. Dwinell MB, Lugering N, Eckmann L, Kagnoff MF (2001) Regulated production of interferon-inducible T-cell chemoattractants by human intestinal epithelial cells. Gastroenterology 120:49–59

    Article  PubMed  CAS  Google Scholar 

  6. Yang SK, Eckmann L, Panja A, Kagnoff MF (1997) Differential and regulated expression of C-X-C, C-C, and C-chemokines by human colon epithelial cells. Gastroenterology 113:1214–1223

    Article  PubMed  CAS  Google Scholar 

  7. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734

    Article  PubMed  CAS  Google Scholar 

  8. Chen LF, Mu Y, Greene WC (2002) Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J 21:6539–6548

    Article  PubMed  CAS  Google Scholar 

  9. Zhong H, May MJ, Jimi E, Ghosh S (2002) The phosphorylation status of nuclear NF-kappaB determines its association with CBP/p300 or HDAC-1. Mol Cell 9:625–636

    Article  PubMed  CAS  Google Scholar 

  10. Okazaki T, Sakon S, Sasazuki T, Sakurai H, Doi T, Yagita H, Okumura K, Nakano H (2003) Phosphorylation of serine 276 is essential for p65 NF-kappaB subunit-dependent cellular responses. Biochem Biophys Res Commun 300:807–812

    Article  PubMed  CAS  Google Scholar 

  11. Zhong H, Voll RE, Ghosh S (1998) Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1:661–671

    Article  PubMed  CAS  Google Scholar 

  12. Vermeulen L, De Wilde G, Van Damme P, Vanden Berghe W, Haegeman G (2003) Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J 22:1313–1324

    Article  PubMed  CAS  Google Scholar 

  13. Duran A, Diaz-Meco MT, Moscat J (2003) Essential role of RelA Ser311 phosphorylation by zetaPKC in NF-kappaB transcriptional activation. EMBO J 22:3910–3918

    Article  PubMed  CAS  Google Scholar 

  14. Bird TA, Schooley K, Dower SK, Hagen H, Virca GD (1997) Activation of nuclear transcription factor NF-kappaB by interleukin-1 is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit. J Biol Chem 272:32606–32612

    Article  PubMed  CAS  Google Scholar 

  15. Bae JS, Jang MK, Hong S, An WG, Choi YH, Kim HD, Cheong J (2003) Phosphorylation of NF-kappa B by calmodulin-dependent kinase IV activates anti-apoptotic gene expression. Biochem Biophys Res Commun 305:1094–1098

    Article  PubMed  CAS  Google Scholar 

  16. Sakurai H, Suzuki S, Kawasaki N, Nakano H, Okazaki T, Chino A, Doi T, Saiki I (2003) Tumor necrosis factor-α-induced IKK phosphorylation of NF-κB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem 278:36916–36923

    Article  PubMed  CAS  Google Scholar 

  17. Haller D, Russo MP, Sartor RB, Jobin C (2002) IKK beta and phosphatidylinositol 3-kinase/Akt participate in non-pathogenic gram-negative enteric bacteria-induced RelA phosphorylation and NF-kappa B activation in both primary and intestinal epithelial cell lines. J Biol Chem 277:38168–38178

    Article  PubMed  CAS  Google Scholar 

  18. Madrid LV, Mayo MW, Reuther JY, Baldwin AS Jr (2001) Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 276:18934–18940

    Article  PubMed  CAS  Google Scholar 

  19. Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W (1999) IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem 274:30353–30356

    Article  PubMed  CAS  Google Scholar 

  20. Sizemore N, Leung S, Stark GR (1999) Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit. Mol Cell Biol 19:4798–4805

    PubMed  CAS  Google Scholar 

  21. Madrid LV, Wang CY, Guttridge DC, Schottelius AJ, Baldwin AS, Mayo MW (2000) Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol 20:1626–1638

    Article  PubMed  CAS  Google Scholar 

  22. Anest V, Hanson JL, Cogswell PC, Steinbrecher KA, Strahl BD, Baldwin AS (2003) A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 423:659–663

    Article  PubMed  CAS  Google Scholar 

  23. Yamamoto Y, Verma UN, Prajapati S, Kwak YT, Gaynor RB (2003) Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 423:655–659

    Article  PubMed  CAS  Google Scholar 

  24. Delhase M, Hayakawa M, Chen Y, Karin M (1999) Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 284:309–313

    Article  PubMed  CAS  Google Scholar 

  25. Takaesu G, Surabhi RM, Park KJ, Ninomiya-Tsuji J, Matsumoto K, Gaynor RB (2003) TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J Mol Biol 326:105–115

    Article  PubMed  CAS  Google Scholar 

  26. Yang J, Lin Y, Guo Z, Cheng J, Huang J, Deng L, Liao W, Chen Z, Liu Z, Su B (2001) The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2:620–624

    Article  PubMed  CAS  Google Scholar 

  27. Leitges M, Sanz L, Martin P, Duran A, Braun U, Garcia JF, Camacho F, Diaz-Meco MT, Rennert PD, Moscat J (2001) Targeted disruption of the zetaPKC gene results in the impairment of the NF-kappaB pathway. Mol Cell 8:771–780

    Article  PubMed  CAS  Google Scholar 

  28. Zandi E, Chen Y, Karin M (1998) Direct phosphorylation of IkappaB by IKKalpha and IKKbeta: discrimination between free and NF-kappaB-bound substrate. Science 281:1360–1363

    Article  PubMed  CAS  Google Scholar 

  29. Lee FS, Peters RT, Dang LC, Maniatis T (1998) MEKK1 activates both IkappaB kinase alpha and IkappaB kinase beta. Proc Natl Acad Sci USA 95:9319–9324

    Article  PubMed  CAS  Google Scholar 

  30. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M (1997) The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 91:243–252

    Article  PubMed  CAS  Google Scholar 

  31. Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV (1997) IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 278:866–869

    Article  PubMed  CAS  Google Scholar 

  32. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860–866

    Article  PubMed  CAS  Google Scholar 

  33. Scheid MP, Woodgett JR (2003) Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett 546:108–112

    Article  PubMed  CAS  Google Scholar 

  34. Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401:86–90

    Article  PubMed  CAS  Google Scholar 

  35. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85

    Article  PubMed  CAS  Google Scholar 

  36. Storz P, Toker A (2002) 3′-phosphoinositide-dependent kinase-1 (PDK-1) in PI 3-kinase signaling. Front Biosci 7:d886–d902

    Article  PubMed  CAS  Google Scholar 

  37. Sato S, Fujita N, Tsuruo T (2002) Regulation of kinase activity of 3-phosphoinositide-dependent protein kinase-1 by binding to 14-3-3. J Biol Chem 277:39360–39367

    Article  PubMed  CAS  Google Scholar 

  38. Fujita N, Sato S, Ishida A, Tsuruo T (2002) Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J Biol Chem 277:10346–10353

    Article  PubMed  CAS  Google Scholar 

  39. Kim DW, Hwang JH, Suh JM, Kim H, Song JH, Hwang ES, Hwang IY, Park KC, Chung HK, Kim JM, Park J, Hemmings BA, Shong M (2003) RET/PTC (rearranged in transformation/papillary thyroid carcinomas) tyrosine kinase phosphorylates and activates phosphoinositide-dependent kinase 1 (PDK1): an alternative phosphatidylinositol 3-kinase-independent pathway to activate PDK1. Mol Endocrinol 17:1382–1394

    Article  PubMed  CAS  Google Scholar 

  40. Horton RM (1995) PCR-mediated recombination and mutagenesis. SOEing together tailor-made genes. Mol Biotechnol 3:93–99

    PubMed  CAS  Google Scholar 

  41. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105

    Article  PubMed  CAS  Google Scholar 

  42. Ballif BA, Shimamura A, Pae E, Blenis J (2001) Disruption of 3-phosphoinositide-dependent kinase 1 (PDK1) signaling by the anti-tumorigenic and anti-proliferative agent n-alpha-tosyl-l-phenylalanyl chloromethyl ketone. J Biol Chem 276:12466–12475

    Article  PubMed  CAS  Google Scholar 

  43. Delhase M, Li N, Karin M (2000) Kinase regulation in inflammatory response. Nature 406:367–368

    Article  PubMed  CAS  Google Scholar 

  44. Tanaka H, Fujita N, Tsuruo T (2005) 3-Phosphoinositide-dependent protein kinase 1-mediated IκB kinase (IKKB) phosphorylation activates NF-κB signaling. J Biol Chem 280:40965–40973

    Article  PubMed  CAS  Google Scholar 

  45. Schoellmann G (1962) Biochemistry 2:252–255

    Article  Google Scholar 

  46. Troll W, Klassen A, Janoff A (1970) Tumorigenesis in mouse skin: inhibition by synthetic inhibitors of proteases. Science 169:1211–1213

    Article  PubMed  CAS  Google Scholar 

  47. Slaga TJ, Klein-Szanto AJ, Fischer SM, Weeks CE, Nelson K, Major S (1980) Studies on mechanism of action of anti-tumor-promoting agents: their specificity in two-stage promotion. Proc Natl Acad Sci USA 77:2251–2254

    Article  PubMed  CAS  Google Scholar 

  48. Grammer TC, Blenis J (1996) The serine protease inhibitors, tosylphenylalanine chloromethyl ketone and tosyllysine chloromethyl ketone, potently inhibit pp70s6k activation. J Biol Chem 271:23650–23652

    Article  PubMed  CAS  Google Scholar 

  49. Wu M, Lee H, Bellas RE, Schauer SL, Arsura M, Katz D, FitzGerald MJ, Rothstein TL, Sherr DH, Sonenshine GE (1996) Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells. EMBO J 15:4682–4690

    PubMed  CAS  Google Scholar 

  50. Tang ED, Inohara N, Wang CY, Nunez G, Guan KL (2003) Roles for homotypic interactions and transautophosphorylation in IκB Kinase (IKKβ) activation. J Biol Chem 278:38566–38570

    Article  PubMed  CAS  Google Scholar 

  51. Chen G, Cao P, Goeddel DV (2002) TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 9:401–410

    Article  PubMed  CAS  Google Scholar 

  52. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406:86–90

    Article  PubMed  CAS  Google Scholar 

  53. Buss H, Dorrie A, Schmitz ML, Frank R, Livingstone M, Resch K, Kracht M (2004) Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem 279:49571–49574

    Article  PubMed  CAS  Google Scholar 

  54. Lee KY, D’Acquisto F, Hayden MS, Shim JH, Ghosh S (2005) PDK1 nucleates T cell receptor-induced signaling complex for NF-kappaB activation. Science 308:114–118

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljinder Salh.

Additional information

This study was supported in part by grants from the Crohn’s and Colitis Foundation of Canada (BS) and the Canadian Society for Intestinal Research (BS) and funds from the Geraldine Dow Foundation to B. S. K.P. was supported by a Michael Smith Graduate Studentship. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked, “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parhar, K., Eivemark, S., Assi, K. et al. Investigation of interleukin 1β-mediated regulation of NF-κB activation in colonic cells reveals divergence between PKB and PDK-transduced events. Mol Cell Biochem 300, 113–127 (2007). https://doi.org/10.1007/s11010-006-9375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9375-4

Keywords

Navigation