Skip to main content
Log in

Brd2 is a TBP-associated protein and recruits TBP into E2F-1 transcriptional complex in response to serum stimulation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Brd2 is a novel protein kinase and plays a role in cell cycle-responsive transcription. Recent studies show that Brd2 contributes to E2F-1 regulated cell cycle progression. In this process, Brd2 exhibits scaffold or transcriptional adapter functions and mediates recruitment of both E2F-1 transcription factors and chromatin-remodelling activity to the E2F-1-resposive promoter. In the present study, we show that Brd2 is also a TBP-associated protein and a 26 amino acids peptide in the first bromodomain of Brd2 is essential for Brd2-TBP interaction. We found that serum stimulation of serum starved NIH/3T3 cells efficiently induces the formation of the Brd2-E2F-1-TBP complex in vivo. In this process, Brd2 plays a pivotal role in the recruitment of TBP into a E2F-1 transcriptional complex, as tested in overexpression assay and at the endogenous level. Furthermore, the 26 amino acid peptide that mediates Brd2-TBP interaction is proved to be critical for Brd2-dependent transactivation on E2F-1-responsive promoters, and moreover, Brd2 and E2F-1 may cooperatively participate in various serum-induced transactivation processes in Luciferase-reporter assays. Thus taken together, because Brd2 may recruit a HAT in its transactivational complex and E2F-1 has been found to stimulate transcription by recruiting acetyltransferase and cofactors GCN5, we predict that Brd2 and E2F-1 may act in a cooperative way to introduce an optimal environment for TBP binding to the TATA-element of gene promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berk AJ: Activation of RNA polymerase II transcription. Curr Opin Cell Biol 11: 330–335, 1999

    Article  PubMed  CAS  Google Scholar 

  2. Orphanides G, Lagrange T, Reinberg D: The general transcription factors of RNA polymerase II. Genes Dev 10: 2657–2683, 1996

    PubMed  CAS  Google Scholar 

  3. Beverly ME: Specificity of gene regulation. Cell 109: 267–270, 2002

    Article  Google Scholar 

  4. Lee TI, Young RA: Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34: 77–137, 2000

    Article  PubMed  CAS  Google Scholar 

  5. Imbalzano AN, Kwon H, Green MR, Kingston RE: Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370: 481–485, 1994

    Article  PubMed  CAS  Google Scholar 

  6. Sherr CJ: Cancer cell cycles. Science 274: 1672–1677, 1996

    Article  PubMed  CAS  Google Scholar 

  7. Sylvester AM, Chen D, Krasinski K, Andres V: Role of c-fos and E2F in the induction of cyclin A transcription and vascular smooth muscle cell proliferation. J Clin Invest 101: 940–948, 1998

    Article  PubMed  CAS  Google Scholar 

  8. Lang SE, McMahon SB, Cole MD, Hearing P: E2F transcriptional activation requires TRRAP and GCN5 cofactors. J Biol Chem 276: 32627–32634, 2001

    Article  PubMed  CAS  Google Scholar 

  9. Denis GV, Vaziri C, Guo N, Faller DV: RING3 kinase transactivates promoters of cell cycle regulatory genes through E2F. Cell Grow Diff 11: 417–424, 2000

    CAS  Google Scholar 

  10. Guo N, Faller DV, Denis GV: Activation-induced nuclear translocation of RING3. J Cell Sci 113: 3085–3091, 2000

    PubMed  CAS  Google Scholar 

  11. Greenwald RJ, Tumang JR, Sinha A, Currier N, Cardiff RD, Rothstein TL, Faller DV, Denis GV: Eμ-BRD2 transgenic mice develop B-cell lymphoma and leukemia. Blood 103: 1475–1484, 2004

    Article  PubMed  CAS  Google Scholar 

  12. Chua P, Roeder GS: BDF1, a yeast chromosomal protein required for sporulation. Mol Cell Biol 15: 3685–3696, 1995

    PubMed  CAS  Google Scholar 

  13. Matangkasombut O, Buratowski RM, Swilling NW, Buratowski S: Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev 14: 951–962, 2000

    PubMed  CAS  Google Scholar 

  14. Sinha A, Faller DV, Denis GV: Bromodomain analysis of Brd2-dependent transcriptional activation of cyclin A. Biochem J 387: 257–269, 2005

    Article  PubMed  CAS  Google Scholar 

  15. Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE: Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain. J Mol Biol 304: 355–370, 2000

    Article  PubMed  CAS  Google Scholar 

  16. Dhalluin C, Carlson J, Zeng L, He C, Aggarwal AK, Zhou MM: Structure and ligand of a histone acetyltransferase bromodomain. Nature 399: 491–496, 1999

    Article  PubMed  CAS  Google Scholar 

  17. Bannister AJ, Kouzarides T: The CBP co-activator is a histone acetyltransferase. Nature 384: 641–643, 1996

    Article  PubMed  CAS  Google Scholar 

  18. Mizzen CA, Yang XJ, Kokubo T, Brownell JE, Bannister AJ, Owen-Hughes T, Workman J, Wang L, Berger SL, Kouzarides T, Nakatani Y, Allis D: The TAFII250 subunit of TFIID has histone acetyltransferase activity. Cell 87: 1261–1270, 1996

    Article  PubMed  CAS  Google Scholar 

  19. Ruppert S, Wang EH, Tjian R: Cloning and expression of human TAFII250: a TBP-associated factor implicated in cell-cycle regulation. Nature 362: 175–179, 1993

    Article  PubMed  CAS  Google Scholar 

  20. Tamkun JW, Deuring R, Scott MP, Kissinger M, Pattatucci AM, Kaufman TC, Kennison JA: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68: 561–572, 1992

    Article  PubMed  CAS  Google Scholar 

  21. Winston F, Allis CD: The bromodomain: a chromatin-targeting module? Nat Struct Biol 6: 601–604, 1999

    Google Scholar 

  22. Crowley TE, Kaine EM, Yoshida M, Nandi A, Wolgemuth DJ: Reproductive cycle regulation of nuclear import, euchromatic localization, and association with components of Pol II mediator of a mammalian double-bromodomain protein. Mol Endocrinol 16: 1727–1737, 2002

    Article  PubMed  CAS  Google Scholar 

  23. Sterner DE, Grant PA, Roberts SM, Duggan LJ, Belotserkovskaya R, Pacella LA, Winston F, Workman JL, Berger SL: Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-Binding Protein interaction. Mol Cell Biol 19: 86–98, 1999

    PubMed  CAS  Google Scholar 

  24. Ornaghi P, Ballario P, Lena AM, Gonzalez A, Filetici P: The bromodomain of GCN5p interacts in vitro with specific residues in the N terminus of histone H4. J Mol Biol 287: 1–7, 1999

    Article  PubMed  CAS  Google Scholar 

  25. Poux AN, Marmorstein R: Molecular basis for GCN5/PCAF histone acetyltransferase selectivity for histone and nonhistone substrates. Biochemistry 42: 14366–14374, 2003

    Article  PubMed  CAS  Google Scholar 

  26. Kimura A, Matsubara K, Horikoshi M: A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J Biochem 138: 647–662, 2005

    Article  PubMed  CAS  Google Scholar 

  27. Biswas D, Imbalzano AN, Eriksson P, Yu Y, Stillman DJ: Role for Nhp6, GCN5, and the Swi/Snf complex in stimulating formation of the TATA-Binding Protein-TFIIA-DNA complex. Mol Cell Biol 24: 8312–8321, 2004

    Article  PubMed  CAS  Google Scholar 

  28. Denis GV, McComb ME, Faller DV, Sinha A, Romesser PB, Costello CE: Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines. J Proteome Res 5: 502–511, 2006

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yipeng Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, J., Dong, W., Chen, L. et al. Brd2 is a TBP-associated protein and recruits TBP into E2F-1 transcriptional complex in response to serum stimulation. Mol Cell Biochem 294, 45–54 (2007). https://doi.org/10.1007/s11010-006-9223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9223-6

Keywords

Navigation