Skip to main content
Log in

Comparative Study on in Vitro Effects of Homocysteine Thiolactone and Homocysteine on HUVEC Cells: Evidence for a Stronger Proapoptotic and Proinflammative Homocysteine Thiolactone

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hyperhomocysteinemia is an independent risk factor for the development of atherosclerosis. However the underlying mechanisms responsible for endothelial cell injury with increased plasma concentration of homocysteine or homocysteine derivatives remains still incompletely elucidated. In this study, we investigated the ability of homocysteine (Hcy) and homocysteine thiolactone (HcyT) to induce cell death and IL-8 secretion in primary human umbilical vein endothelial cells (HUVEC). Hcy and HcyT were both cytotoxic and capable of promoting cell death, as measured by caspase-3 activation and DNA fragmentation. ELISA assays clearly demonstrated that Hcy and HcyT strongly activated IL-8 release. Furthermore, our results showed that HcyT was much more efficient than Hcy in activating caspase-3 or in inducing IL-8 secretion. The use of antioxidants such as vitamin C and vitamin E strongly but not completely reduced programmed cell death and chemokine release suggesting that other pathways different than reactive oxygen species are also involved. This study suggests that Homocysteine derivatives like HcyT might possess stronger cytotoxicity and pro-inflammatory properties and that Hcy derivatives levels should therefore be more taken into account during diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Hcy:

homocysteine

HcyT:

homocysteine thiolactone

HUVEC:

human umbilical vein endothelial cells

References

  1. Wilcken DEL, Dudman NPB: Homocystinuria and atherosclerosis In: AJ Lusis, JI Rotter, RS Sparkes (eds). Molecular Genetics of Coronary Artery Disease; Candidate Genes and Process in Atherosclerosis. Monograms in Human Genetics, Karger, New York, NY, 1992

  2. Mudd SH, Havlik R, Levy HL, McKusicK VA, Feinleib M: Cardiovascular risk in Heterozygotes for homocystinuria. Am J Hum Genet 34: 1018–1021, 1982

    PubMed  CAS  Google Scholar 

  3. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RJ, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP, Rozen R: A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet 7: 195–200, 1995

    Google Scholar 

  4. Selhub J, Jacques PF, Wilson PWF, Rush D, Rosenberg IH: Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. J Am Med Assoc 270: 2693–2698, 2001

    Article  Google Scholar 

  5. Skurk S, Walsh K: A new mechanism of Homocysteine-Mediated Endothelial Cell Cytotoxicity. Hypertension 43: 1168–1170, 2004

    Article  PubMed  CAS  Google Scholar 

  6. Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B and Graham I: Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 324: 1149–1155, 1991

    Article  PubMed  CAS  Google Scholar 

  7. Audelin MC, Genest J Jr: Homocysteine and cardiovascular disease in diabetes mellitus. Atherosclerosis 159: 497–511, 2001

    Article  PubMed  CAS  Google Scholar 

  8. Herrmann W, Knapp JP: Hyperhomocysteinemia: a new risk factor for degenerative diseases. Clin Lab 48: 471–481, 2002

    PubMed  CAS  Google Scholar 

  9. Polidori MC, Marvardi M, Cheribini A, Senin U, Mecocci P: Heart disease and cardiovascular risk factors in the cognitively impaired elderly: implication for Alzheimer's dementia. Aging 13: 231–239, 2001

    PubMed  CAS  Google Scholar 

  10. Schroecksnadel K, Frick B, Wirleitner B, Winkler C, Schennach H, Fuchs D: Moderate Hyperhomocysteinemia and immune activation. Curr Pharm Biotechnol 5: 107–118, 2004

    Article  PubMed  CAS  Google Scholar 

  11. Den Heijer M, Koster T, Blom HJ, Bos GM, Breit E, Reitsma PH, et al.: Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. N Engl J Med 344: 759–762, 1996

    Article  Google Scholar 

  12. McCully KS: Homocysteine and vascular disease. Nat Med 2: 386–389, 1996

    Article  PubMed  CAS  Google Scholar 

  13. Lawrence de Koning AB Werstuck GH, Zhou J, Austin RC: Hyperhomocysteinemia and its role in the development of atherosclerosis. Clin Biochem 36: 431–441, 2003

    Article  PubMed  CAS  Google Scholar 

  14. Bessede G, Miguet C, Gambert P, Neel D, Lizard G: Efficiency of Homocysteine plus Copper in inducing apoptosis is inversely proportional to γ glutamyl transpeptidase activity. FASEB J 15: 1927–1940, 2001

    Article  PubMed  CAS  Google Scholar 

  15. Di Simone N, Maggiano N, Caliandro D, Riccardi P, Evangelista A, Carducci B, Caruso A: Homocysteine induces trophoblasts cell death with apoptotic features. Biol Reprod 69: 1129–1134, 2003

    Article  PubMed  CAS  Google Scholar 

  16. Poddar R, Sivasubramania N, Dibello PM, Robinson K, Jacobsen D: Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukine-8 in human aortic endothelial cells: implications for vascular disease. Circulation 103: 2717–2723, 2001

    PubMed  CAS  Google Scholar 

  17. Jakubowski H: Molecular basis of homocysteine toxicity in humans. Cell Mol Life Sci 61: 470–487, 2004

    Article  PubMed  CAS  Google Scholar 

  18. McCully KS: Chemical pathology of homocysteine. II. Carcinogenesis and homocysteine thiolactone metabolism. Ann Clin Labo Sci 24: 27–59, 1994

    CAS  Google Scholar 

  19. Huang RF, Huang SM, Lin BS, Wei JS, and Liu TZ: Homocysteine thiolactone induces apoptotic DNA damage mediated by increased intracellular hydrogen peroxide and caspase-3 activation in HL-60 cells. Life Sci 68: 2799–2811, 2001

    Article  PubMed  CAS  Google Scholar 

  20. Mercie P, Garnier O, Lascoste L, Renard M, Closse C, Durrieu F, et al.: Homocysteine thiolactone induces caspase-independent vascular endothelial cell death apoptosic features. Apoptosis 5: 403–411, 2000

    Article  PubMed  CAS  Google Scholar 

  21. Renvoize C, Biola A, Pallardy M, Breard J: Apoptosis: identification of dying cells. Cell Biol toxicol 14: 111–120, 1998

    Article  PubMed  CAS  Google Scholar 

  22. Loscalzo J: The oxidant stress of hyperhomocysteinemia. J Clin Invest 98: 5–7, 1996

    PubMed  CAS  Google Scholar 

  23. Lang D, Kredan MB, Moat SJ, Hussain SA, Powell CA, Bellamy MF, Powers HJ, Lewis MJ: Homocysteine-induced inhibition of endothelium relaxation in rabbit aorta: role for superoxide anions. Arterioscler Thromb Vasc Biol 20: 422–427, 2000

    PubMed  CAS  Google Scholar 

  24. Hermann C, Zeiher AM, Dmmeler S: Shear stress inhibits H2O2-induced apoptosis in human endothelial cells by modulation of the glutathione redox cycle and nitric oxide synthase. Arterioscler Thromb Vasc Biol 17: 3588–3592, 1997

    PubMed  CAS  Google Scholar 

  25. Dipietrantonio AM, Hsieh TC, Wu JM: Activation of caspase-3 in HL-60 cells exposed to hydrogen peroxide. Biochem Biophys Res Commun 255: 477–482, 1999

    Article  PubMed  CAS  Google Scholar 

  26. Barroso MP, Diaz CG, Lluch GL, Malagon MM, Crane FL, Navas P: Ascorbate and alpha-tocopherol prevent apoptosis induced by serum removal independent of Bcl-2. Arch. Biochem Biophys 343: 243–248, 1997

    Article  PubMed  CAS  Google Scholar 

  27. Haendeler J, Zeiher AM, Dimmeter S: Vitamin C and Vitamin E prevent lipopolysaccharide-induced apoptosis in humans endothelial cells by modulation of Bcl-2 and Bax. Eur J Pharmacol 317: 407–411, 1996

    Article  PubMed  CAS  Google Scholar 

  28. Wu J, Karlsson K, Danielsson A: Effects of vitamins E, C and catalase on bromobenzene- and hydrogen peroxide-induced intracellular oxidation and DNA single-strand breakage in HepG2 cells. J Hepatol 26: 669–677, 1997

    Article  PubMed  CAS  Google Scholar 

  29. Upchurch GR, Welch GN, Fabian AJ, Freedman JE, Jhonson JL, Keaney JF, Loscalzo J: Homocysteine decrease bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 272: 17012–1701, 1997

    Article  PubMed  CAS  Google Scholar 

  30. Heinecke JW, Rosen H, Suzuki LA, Chait A: The role of sulfur containing amino acids in superoxide production and modification of low density lipoprotein arterial smooth muscle cell. J Biol Chem 262: 10098–10103, 1987

    PubMed  CAS  Google Scholar 

  31. Outinen PA, Sood SK, Pfeifer SI, Pamidi S, Podor TJ, Li J, Weitz JL, Austin RC: Homocysteine induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cell. Blood 94: 959–967, 1999

    PubMed  CAS  Google Scholar 

  32. Outinen PA, Sood SK, Liaw PC, Sarge KD, Maeda N, Hirsh J, Podor TJ, Weitz JL, Austin RC: Characterization of the stress inducing effects of homocysteine. Biochem J 332: 213–221, 1998

    PubMed  CAS  Google Scholar 

  33. Ron D: Hyperhomocysteinemia and function of the endoplasmic reticulum. J Clin Invest 107: 1221–1222, 2001

    PubMed  CAS  Google Scholar 

  34. Kokame K, Kato H, Miyata T: Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis. GRP78//BIP and novel genes. J Biol Chem 271: 29659–29665, 1996

    Article  PubMed  CAS  Google Scholar 

  35. Cai Y, Zhang C, Nawa T, Aso T, Tanaka M, Oshiro S, Ichijo H, Kitajima S: Homocysteine responsive ATF3 gene expression in human vascular endothelial cells: Activation of c-jun NH(2) terminal Kinase and promoter responsive element. Blood 96: 2140–2148, 2000

    PubMed  CAS  Google Scholar 

  36. Zhang C, Cai Y, Adachi MT, Oshiro S, Aso T, Kaufman RJ, Kitajima S: Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem 276: 35867–35874, 2001

    Article  PubMed  CAS  Google Scholar 

  37. Hultberg B, Andersson A, Isaksson A: Metabolism of homocysteine, its relation to the other cellular thiols and its mechanism of cell damage in a cell culture line (human histiocytic cell line U937). Biochim Biophys Acta 1269: 6–12, 1995

    Article  PubMed  Google Scholar 

  38. Huang RF, Huang SM, Lin BS, Hung CW, Lu HT: N-Acetylcystein, Vitamin C and vitamin E diminish homocysteine thiolactone induced apoptosis in human promyeloid HL-60 cells. J Nutr 132: 2151–2156, 2002

    PubMed  CAS  Google Scholar 

  39. Jaffe EA, Nachmann RL, Becker CG, Minick CR: Culture of human endothelial cells derived from unbilical veins: Identification by morphologic and immunologic criteria. J Clin Invest 52: 2745, 1973

    PubMed  CAS  Google Scholar 

  40. Denizot F, Lang R: Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89: 271–277, 1986

    Article  PubMed  CAS  Google Scholar 

  41. Slater TF, Sawyer B, Strauli U: Studies on succinate-tetrazolium reductase systems. III. Points of coupling of four different tetrazolium salts. Biochem Biophys Acta 77: 383–393, 1963

    Article  PubMed  CAS  Google Scholar 

  42. Foster V: Mechanisms leading to myocardial infarction: insight from studies of vascular biology. Circulation 90: 2126–2146, 1994

    PubMed  Google Scholar 

  43. Harker LA, Ross R, Slichter SJ, Scott CR: Homocysteine induced atherosclerosis: The role of endothelial cell injury and platelet response in its genesis. J Clin Invest 58: 731–741, 1976

    PubMed  CAS  Google Scholar 

  44. Ross R: Atherosclerosis-an inflammatory disease. N Engl J Med 340: 115–126, 1999

    Article  PubMed  CAS  Google Scholar 

  45. McCully KS: Homocysteine and vascular disease. Nat Med 2: 386–389, 1996

    Article  PubMed  CAS  Google Scholar 

  46. Eberhardt RT, Forgione MA, Cao A, Leopold JA, Rudd MA, Trolliet M, Heydrick S, Stark R, Klings ES, Moldovan NI, Yaghoubi M, Glodshmidt-Clermont PJ, Farber HW, Cohen R, Loscalzo J: Endothelial dysfunction in a murine model of mild hyperhomocysteinemia. J Clin Invest 106: 483–491, 2000

    PubMed  CAS  Google Scholar 

  47. Tsai JC, Perella MA, Yoshizumi M, Hsiech CM, Haber E, Shlegel R, Lee ME: Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci USA 91: 6369–6373, 1994

    Article  PubMed  CAS  Google Scholar 

  48. Stamler JS, Osborne JA, Jaraki O, Rabbani LE, Mullins M, Singel D: Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factors and related oxides of nitrogen. J Clin Invest 91: 308–318, 1993

    PubMed  CAS  Google Scholar 

  49. Stamler JS, Loscalzo J: Endothelium derived relaxing factor modulates the atherothrombogenic effects of homocysteine. J Cardiovasc Pharmacol 20: 202–204, 1992

    Google Scholar 

  50. Grow AJ, Cobb F, and Stamler JS: Homocysteine, nitric oxide and nitrosothiols. In: Homocysteine in health and disease, D Jacobsen, R Carmel (eds). Cambridge University Press, Cambridge, 2001 pp. 39–45

  51. Jakubowski H: Calcium-dependent human serum homocysteine thiolactone hydrolase: A protective mechanism against protein N homocysteinylation. J Biol Chem 275: 3957–3962, 2000

    Article  PubMed  CAS  Google Scholar 

  52. Suhara T, Fukuo K, Yasuda O, Tsubakimoto M, Takemura Y, Kawamoto H, et al.: Homocysteine enhances endothelial apoptosis via upregulation of Fas mediated pathways. Hypertention 43: 1208–1213, 2004

    Article  CAS  Google Scholar 

  53. Jakubowski H: Metabolism of homocysteine thiolactone in human cell culture. J Biol Chem 272: 1935–1942, 1997

    PubMed  CAS  Google Scholar 

  54. Jakubowski H: Protein homocysteinylation possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J 13: 2277–2283, 1999

    PubMed  CAS  Google Scholar 

  55. Jakubowski H, Zhang L, Bardeguez A, Aviv A: Homocysteine-thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Cir Res 87: 45–51, 2000

    CAS  Google Scholar 

  56. Wang G, Siow YL, O K: Homocysteine induces monocyte chemoattractant protein-1 expression by activation NF-kappa B in THP-1 macrophages. Am J Physiol Heart Circ Physiol 280: 2840–2847, 2001

    Google Scholar 

  57. Wang G, O K: Homocysteine stimulates the expression of monocyte chemoattractant protein-1 receptor (CCR2) in human monocytes: Possible involvement of oxygen free radicals. Biochem J 357: 233–240, 2001

    Article  PubMed  CAS  Google Scholar 

  58. Collins T, Cybulsky MI: NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 107: 255–264, 2001

    Article  PubMed  CAS  Google Scholar 

  59. Au-Yeung KKW, Woo CWH, Sung FL, Yip JCW, Siow YL, Karmin O: Hyperhomocysteinemia activates Nuclear Factor-kB in endothelial cells via oxidative stress. Cir Res 94: 28–36, 2004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Kerkeni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerkeni, M., Tnani, M., Chuniaud, L. et al. Comparative Study on in Vitro Effects of Homocysteine Thiolactone and Homocysteine on HUVEC Cells: Evidence for a Stronger Proapoptotic and Proinflammative Homocysteine Thiolactone. Mol Cell Biochem 291, 119–126 (2006). https://doi.org/10.1007/s11010-006-9204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9204-9

Keywords

Navigation