Skip to main content
Log in

De-differentiation of primary human hepatocytes depends on the composition of specialized liver basement membrane

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Basement membrane (BM) is a highly specialized extracellular matrix (ECM), which is associated with epithelia and endothelia. BM provide epithelia with structural support and also regulate cell behavior. The liver contains a unique ECM within the space of Disse, which consists of basement membrane constituents as well as fibrillar ECM molecules. Changes in composition of this ECM are considered detrimental for viability of hepatocytes during progression of liver disease. Mouse tumor-derived BM preparations, such as MatrigelTM, which are commonly used as a model for BM in vitro, differ significantly in their composition from liver BM present in vivo. In order to gain further insights into the role of BM in the regulation of hepatocyte behavior in health and disease, we generated a liver-derived basement membrane matrix (LBLM). LBLM allowed investigation of BM-hepatocyte interactions in vitro. Here we report a novel approach of generating a liver-derived basement membrane matrix by separate isolation of type IV collagen, laminin, nidogen, and heparan sulfate proteoglycans, and subsequent reconstitution into a matrix-like gel. Adhesion of primary human hepatocytes to LBLM was increased and the rate of de-differentiation was decreased compared to hepatocyte cultivation on MatrigelTM or type I collagen matrix. Primary human hepatocytes maintained their differentiated epithelial phenotype on LBLM isolated from normal human livers for more than 21 days, whereas they de-differentiated rapidly on LBLM isolated from cirrhotic human livers. Normal human LBLM contains a unique isoform composition of type IV collagen, namely α1 (IV), α2(IV), α4(IV), and α6(IV) chains, whereas cirrhotic LBLM contains only α1(IV) and α2(IV) isoforms, albeit present in increased amounts. These findings suggest that the composition of liver basement membrane is important for the maintenance of hepatocyte viability and provide anti-de-differentiation clues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BM:

basement membrane

DTT:

dithiothreitol

ECM:

extracellular matrix

EDTA:

ethylenediaminetetraacetic acid

ELISA:

enzyme-linked immunoabsorbent assay

HCl:

hydrochloric acid

HSPG:

heparan sulfate proteoglycans

LBML:

liver basement membrane-like matrix

NC1 domain:

non-collagenous domain

PMSF:

phenylmethylsulphonylfluoride

PHH:

primary human hepatocytes

SMA:

smooth-muscle actin

References

  1. Timpl R: Structure and biological activity of basement membrane proteins. Eur J Biochem 180: 487–502, 1989

    Article  CAS  PubMed  Google Scholar 

  2. Hay ED: Extracellular matrix alters epithelial differentiation. Curr Opin Cell Biol 5: 1029–1035, 1993

    Article  CAS  PubMed  Google Scholar 

  3. Frisch SM, Screaton RA: Anoikis mechanisms. Curr Opin Cell Biol 13: 555–562, 2001

    Article  CAS  PubMed  Google Scholar 

  4. Zeisberg M, Bonner G, Maeshima Y, Colorado P, Muller GA, Strutz F, Kalluri R: Renal fibrosis: collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation. Am J Pathol 159: 1313–1321, 2001

    CAS  PubMed  Google Scholar 

  5. Wisdom BJ, Jr., Gunwar S, Hudson MD, Noelken ME, Hudson BG: Type IV collagen of Engelbreth-Holm-Swarm tumor matrix: Identification of constituent chains. Connect Tissue Res 27: 225–234, 1992

    PubMed  Google Scholar 

  6. Yurchenco PD, O'Rear JJ: Basal lamina assembly. Curr Opin Cell Biol 6: 674–681, 1994

    Article  CAS  PubMed  Google Scholar 

  7. Timpl R, Wiedemann H, van Delden V, Furthmayr H, Kuhn K: A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem 120: 203–211, 1981

    Article  CAS  PubMed  Google Scholar 

  8. Hudson BG, Reeders ST, Tryggvason K: Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem 268: 26033–26036, 1993

    CAS  PubMed  Google Scholar 

  9. Kalluri R, Cosgrove D: Assembly of type IV collagen. Insights from alpha3(IV) collagen-deficient mice. J Biol Chem 275: 12719–12724, 2000

    CAS  PubMed  Google Scholar 

  10. Friedman SL: Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275: 2247–2250, 2000

    Article  CAS  PubMed  Google Scholar 

  11. Martinez-Hernandez A, Amenta PS: The extracellular matrix in hepatic regeneration. Faseb J 9: 1401–1410, 1995

    CAS  PubMed  Google Scholar 

  12. Matsumoto S, Yamamoto K, Nagano T, Okamoto R, Ibuki N, Tagashira M, Tsuji T: Immunohistochemical study on phenotypical changes of hepatocytes in liver disease with reference to extracellular matrix composition. Liver 19: 32–38, 1999

    CAS  PubMed  Google Scholar 

  13. Yang C, Zeisberg M, Mosterman B, Sudhakar A, Yerramalla U, Holthaus K, Xu L, Eng F, Afdhal N, Kalluri R: Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology 124: 147–159, 2003

    Article  CAS  PubMed  Google Scholar 

  14. McGuire RF, Bissell DM, Boyles J, Roll FJ: Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver. Hepatology 15: 989–997, 1992

    CAS  PubMed  Google Scholar 

  15. Neubauer K, Saile B, Ramadori G: Liver fibrosis and altered matrix synthesis. Can J Gastroenterol 15: 187–193, 2001

    CAS  PubMed  Google Scholar 

  16. Kalluri R, Shield CF, Todd P, Hudson BG, Neilson EG: Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J Clin Invest 99: 2470–2478, 1997

    CAS  PubMed  Google Scholar 

  17. Zeisberg M, Ericksen MB, Hamano Y, Neilson EG, Ziyadeh F, Kalluri R: Differential expression of type IV collagen isoforms in rat glomerular endothelial and mesangial cells. Biochem Biophys Res Commun 295: 401–407, 2002

    Article  CAS  PubMed  Google Scholar 

  18. Antignac C, Knebelmann B, Drouot L, Gros F, Deschenes G, Hors-Cayla MC, Zhou J, Tryggvason K, Grunfeld JP, Broyer M, et al.: Deletions in the COL4A5 collagen gene in X-linked Alport syndrome. Characterization of the pathological transcripts in nonrenal cells and correlation with disease expression. J Clin Invest 93: 1195–207, 1994

    CAS  PubMed  Google Scholar 

  19. Gunwar S, Ballester F, Kalluri R, Timoneda J, Chonko AM, Edwards SJ, Noelken ME, Hudson BG: Glomerular basement membrane. Identification of dimeric subunits of the noncollagenous domain (hexamer) of collagen IV and the Goodpasture antigen. J Biol Chem 266: 15318–15324, 1991

    CAS  PubMed  Google Scholar 

  20. Bissell DM, Arenson DM, Maher JJ, Roll FJ: Support of cultured hepatocytes by a laminin-rich gel. Evidence for a functionally significant subendothelial matrix in normal rat liver. J Clin Invest 79: 801–812, 1987

    CAS  PubMed  Google Scholar 

  21. Freytag JW, Ohno M and Hudson BG: Bovine renal glomerular basement membrane. Assessment of proteolysis during isolation. Biochem Biophys Res Commun 72: 796–802, 1976

    CAS  PubMed  Google Scholar 

  22. Freytag JW, Ohno M, Hudson BG: Large scale preparation of bovine renal glomerular basement membrane in the presence of protease inhibitors. Prep Biochem 8: 215–224, 1978

    CAS  PubMed  Google Scholar 

  23. West TW, Fox JW, Jodlowski M, Freytag JW, Hudson BG: Bovine glomerular basement membrane. Properties of the collagenous domain. J Biol Chem 255: 10451–10459, 1980

    CAS  PubMed  Google Scholar 

  24. Kahsai TZ, Enders GC, Gunwar S, Brunmark C, Wieslander J, Kalluri R, Zhou J, Noelken ME, Hudson BG: Seminiferous tubule basement membrane. Composition and organization of type IV collagen chains, and the linkage of alpha3(IV) and alpha5(IV) chains. J Biol Chem 272: 17023–17032, 1997

    Article  CAS  PubMed  Google Scholar 

  25. Brown SE, Guzelian CP, Schuetz E, Quattrochi LC, Kleinman HK, Guzelian PS: Critical role of extracellular matrix on induction by phenobarbital of cytochrome P450 2B1/2 in primary cultures of adult rat hepatocytes. Lab Invest 73: 818–827, 1995

    CAS  PubMed  Google Scholar 

  26. Pagan R, Martin I, Alonso A, Llobera M, Vilaro S: Vimentin filaments follow the preexisting cytokeratin network during epithelial-mesenchymal transition of cultured neonatal rat hepatocytes. Exp Cell Res 222: 333–344, 1996

    Article  CAS  PubMed  Google Scholar 

  27. Blaheta RA, Kronenberger B, Woitaschek D, Auth MK, Scholz M, Weber S, Schuldes H, Encke A, Markus BH: Dedifferentiation of human hepatocytes by extracellular matrix proteins in vitro: Quantitative and qualitative investigation of cytokeratin 7, 8, 18, 19 and vimentin filaments. J Hepatol 28: 677–690, 1998

    Article  CAS  PubMed  Google Scholar 

  28. Blaheta RA, Kronenberger B, Woitaschek D, Schick C, Oppermann E, Auth MK, Strain AJ, Weber S, Encke A, Markus BH: Interference of soluble mediators into liver matrix triggered dedifferentiation of human hepatocytes. Transplant Proc 31: 502–504, 1999

    CAS  PubMed  Google Scholar 

  29. Yuasa C, Tomita Y, Shono M, Ishimura K, Ichihara A: Importance of cell aggregation for expression of liver functions and regeneration demonstrated with primary cultured hepatocytes. J Cell Physiol 156: 522–530, 1993

    Article  CAS  PubMed  Google Scholar 

  30. Ni R, Tomita Y, Matsuda K, Ichihara A, Ishimura K, Ogasawara J, Nagata S: Fas-mediated apoptosis in primary cultured mouse hepatocytes. Exp Cell Res 215: 332–337, 1994

    Article  CAS  PubMed  Google Scholar 

  31. Tomita Y, Abraham S, Noda C, Ichihara A: Pyruvate stimulates hormonal induction of lipogenic enzymes in primary cultured rat hepatocytes. Biochim Biophys Acta 1170: 253–257, 1993

    CAS  PubMed  Google Scholar 

  32. Tomita Y, Yuasa C, Ni R, Ishimura K, Ichihara A: Long-term maintenance of functional rat hepatocytes in primary culture by additions of pyruvate and various hormones. Biochim Biophys Acta 1243: 329–335, 1995

    PubMed  Google Scholar 

  33. Boutaud A, Borza DB, Bondar O, Gunwar S, Netzer KO, Singh N, Ninomiya Y, Sado Y, Noelken ME, Hudson BG: Type IV collagen of the glomerular basement membrane. Evidence that the chain specificity of network assembly is encoded by the noncollagenous NC1 domains. J Biol Chem 275: 30716–30724, 2000

    Article  CAS  PubMed  Google Scholar 

  34. Brill S, Zvibel I, Halpern Z, Oren R: The role of fetal and adult hepatocyte extracellular matrix in the regulation of tissue-specific gene expression in fetal and adult hepatocytes. Eur J Cell Biol 81: 43–50, 2002

    Article  CAS  PubMed  Google Scholar 

  35. Kamiya A, Kojima N, Kinoshita T, Sakai Y, Miyaijma A: Maturation of fetal hepatocytes in vitro by extracellular matrices and oncostatin M: Induction of tryptophan oxygenase. Hepatology 35: 1351–1359, 2002

    Article  CAS  PubMed  Google Scholar 

  36. Sidhu JS, Liu F, Omiecinski CJ: Phenobarbital responsiveness as a uniquely sensitive indicator of hepatocyte differentiation status: requirement of dexamethasone and extracellular matrix in establishing the functional integrity of cultured primary rat hepatocytes. Exp Cell Res 292: 252–264, 2004

    Article  CAS  PubMed  Google Scholar 

  37. Flaim CJ, Chien S, Bhatia SN: An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2: 119–125, 2005

    Article  CAS  PubMed  Google Scholar 

  38. Sorkine P, Ben Abraham R, Brill S and Szold O: Liver support systems. Isr Med Assoc J 3: 44–49, 2001

    CAS  PubMed  Google Scholar 

  39. Kulig KM, Vacanti JP: Hepatic tissue engineering. Transpl Immunol 12: 303–310, 2004

    CAS  PubMed  Google Scholar 

  40. Mitry RR, Hughes RD, Dhawan A: Progress in human hepatocytes: isolation, culture and cryopreservation. Semin Cell Dev Biol 13: 463–467, 2002

    Article  CAS  PubMed  Google Scholar 

  41. Runge D, Runge DM, Jager D, Lubecki KA, Beer Stolz D, Karathanasis S, Kietzmann T, Strom SC, Jungermann K, Fleig WE, Michalopoulos GK: Serum-free, long-term cultures of human hepatocytes: maintenance of cell morphology, transcription factors, and liver-specific functions. Biochem Biophys Res Commun 269: 46–53, 2000

    Article  CAS  PubMed  Google Scholar 

  42. Schuetz EG, Li D, Omiecinski CJ, Muller-Eberhard U, Kleinman HK, Elswick B, Guzelian PS: Regulation of gene expression in adult rat hepatocytes cultured on a basement membrane matrix. J Cell Physiol 134: 309–323, 1988

    Article  CAS  PubMed  Google Scholar 

  43. Kleinman HK, McGarvey ML, Liotta LA, Robey PG, Tryggvason K, Martin GR: Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21: 6188–6193, 1982

    Article  CAS  PubMed  Google Scholar 

  44. Hadley MA, Byers SW, Suarez-Quian CA, Kleinman HK, Dym M: Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J Cell Biol 101: 1511–1522, 1985

    Article  CAS  PubMed  Google Scholar 

  45. Smalley M, Leiper K, Tootle R, McCloskey P, O'Hare MJ, Hodgson H: Immortalization of human hepatocytes by temperature-sensitive SV40 large-T antigen. In Vitro Cell Dev Biol Anim 37: 166–168, 2001

    Article  CAS  PubMed  Google Scholar 

  46. Wickstrom ML, Khan SA, Haschek WM, Wyman JF, Eriksson JE, Schaeffer DJ, Beasley VR: Alterations in microtubules, intermediate filaments, and microfilaments induced by microcystin-LR in cultured cells. Toxicol Pathol 23: 326–337, 1995

    CAS  PubMed  Google Scholar 

  47. Schuppan D, Ruehl M, Somasundaram R, Hahn EG: Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis 21: 351–372, 2001

    Article  CAS  PubMed  Google Scholar 

  48. Cardone MH, Salvesen GS, Widmann C, Johnson G, Frisch SM: The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. Cell 90: 315–323, 1997

    Article  CAS  PubMed  Google Scholar 

  49. Gardner H, Broberg A, Pozzi A, Laato M, Heino J: Absence of integrin alpha1beta1 in the mouse causes loss of feedback regulation of collagen synthesis in normal and wounded dermis. J Cell Sci 112: 263–272, 1999

    CAS  PubMed  Google Scholar 

  50. Zeisberg M, Strutz F, Muller GA: Renal fibrosis: an update. Curr Opin Nephrol Hypertens 10: 315–320, 2001

    Article  CAS  PubMed  Google Scholar 

  51. Herbst H, Frey A, Heinrichs O, Milani S, Bechstein WO, Neuhaus P, Schuppan D: Heterogeneity of liver cells expressing procollagen types I and IV in vivo. Histochem Cell Biol 107: 399–409, 1997

    Article  CAS  PubMed  Google Scholar 

  52. Hata R, Ninomiya Y, Sano J, Konomi H, Hori H, Sunada H, Tanaka S, Kabuki K, Nagai Y, Tsukada Y: Activation of collagen synthesis in primary culture of rat liver parenchymal cells (hepatocytes). J Cell Physiol 122: 333–342, 1985

    Article  CAS  PubMed  Google Scholar 

  53. Hata R, Ninomiya Y, Nagai Y, Tsukada Y: Biosynthesis of interstitial types of collagen by albumin-producing rat liver parenchymal cell (hepatocyte) clones in culture. Biochemistry 19: 169–176, 1980

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghu Kalluri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeisberg, M., Kramer, K., Sindhi, N. et al. De-differentiation of primary human hepatocytes depends on the composition of specialized liver basement membrane. Mol Cell Biochem 283, 181–189 (2006). https://doi.org/10.1007/s11010-006-2677-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-2677-8

Key Words

Navigation