Skip to main content
Log in

Comparative antioxidant activity of tocotrienols and the novel chromanyl-polyisoprenyl molecule FeAox-6 in isolated membranes and intact cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxidative stress plays a pivotal role in the pathogenesis of several chronic diseases and antioxidants may represent potential tools for the prevention of these diseases. Here, we investigated the antioxidant efficiency of different tocotrienol isoforms (é-, δ-, γ-tocotrienols), and that of FeAox-6, a novel synthetic compound which combines, by a stable covalent bond, the chroman head of vitamin E and a polyisoprenyl sequence of four conjugated double bonds into a single molecule. The antioxidant efficiency was evaluated as the ability of the compounds to inhibit lipid peroxidation, reactive oxygen species (ROS) production, heat shock protein (hsp) expression in rat liver microsomal membranes as well as in RAT-1 immortalized fibroblasts challenged with different free radical sources, including 2,2′-azobis(2-amidinopropane) (AAPH), tert-butyl hydroperoxide (tert-BOOH) and H2O2. Our results show that individual tocotrienols display different antioxidant potencies. Irrespective of the prooxidant used, the order of effectiveness was:δ-tocotrienol > γ-tocotrienol = é-tocotrienol in both isolated membranes and intact cells. This is presumably due to the decreased methylation of δ-tocotrienol chromane ring, which allows the molecule to be more easily incorporated into cell membranes. Moreover, we found that FeAox-6 showed an antioxidant potency greater than that of δ-tocotrienol. Such an efficiency seems to depend on the concomitant presence of a chromane ring and a phytyl chain in the molecule, which because of four conjugated double bonds, may induce a greater mobility and a more uniform distribution within cell membrane. In view of these results, FeAox-6 represents a new potential preventive agent in chronic diseases in which oxidative stress plays a pathogenic role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-azobis(2-amidinopropane)

BHT:

butylated hydroxytoluene

DCF:

6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate

DMSO:

dimethyl sulfoxide

FeAOX-6:

(±)-(E)-2,5,7,8-tetramethyl-2(4,8,12-trimethyl-trideca-1,3,5,7,11-pentaenyl)chroman-6-ol)

hsp:

heat shock protein

MDA:

malondialdehyde

PBS:

phosphate buffered saline

ROS:

reactive oxygen species

TBA:

2-thiobarbituric acid

TBARS:

thiobarbituric acid reactive substances

tert-BOOH:

tert-butyl hydroperoxide

TCA:

Trichloroacetic acid

References

  1. Halliwell B, Gutteridge JM: The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med. 8: 89–193, 1985

    Article  PubMed  CAS  Google Scholar 

  2. Halliwell B: Antioxidants in human health and disease. Annu Rev Nutr 16: 33–50, 1996

    Article  PubMed  CAS  Google Scholar 

  3. Parthasarathy S, Santanam N, Ramachandran S, Meilhac O: Oxidants and antioxidants in atherogenesis. An appraisal. J Lipid Res 40: 2143–2157, 1999

    CAS  Google Scholar 

  4. Malins DC, Johnson PM, Wheeler TM, Barker EA, Polissar NL, Vinson MA: Age-related radical-induced DNA damage is linked to prostate cancer. Cancer Res 61: 6025–6028, 2001

    PubMed  CAS  Google Scholar 

  5. Papas AM: Diet and antioxidant status. Food Chem Toxicol. 37: 999–1007, 1999

    Article  PubMed  CAS  Google Scholar 

  6. Pryor WA: Vitamin E and heart disease: basic science to clinical intervention trials. Free Rad Biol Med 28: 141–164, 2000

    Article  PubMed  CAS  Google Scholar 

  7. Blatt DH, Leonard SW, Traber MG: Vitamin E kinetics and the function of tocopherol regulatory proteins. Nutrition 17: 799–805, 2001

    Article  PubMed  CAS  Google Scholar 

  8. Marchioli R, Schweiger C, Levantesi G, Tavazzi L, Valagussa F: Antioxidant vitamins and prevention of cardiovascular disease: epidemiological and clinical trial data. Lipids 36: s53–s63, 2001

    PubMed  CAS  Google Scholar 

  9. Ingold KU, Webb AC, Witter D, Burton GW, Metcalfe TA, Muller DP: Vitamin E remains the major lipid-soluble, chain-breaking antioxidant in human plasma even in individuals suffering severe vitamin E deficiency. Arch Biochem Biophys 259: 224–225, 1987

    Article  PubMed  CAS  Google Scholar 

  10. Brigelius-Flohe R, Traber MG: Vitamin E: function and metabolism. FASEB J 13: 1145–1155, 1999

    PubMed  CAS  Google Scholar 

  11. Machlin LJ: Vitamin E. In Handbook of Vitamins, L.J. Machlin (ed). New York: Dekker 1991. pp 99–144

    Google Scholar 

  12. Kamal-Eldin A, Appelqvist LA: The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31: 671–701, 1996

    PubMed  CAS  Google Scholar 

  13. Schneider C: Chemistry and biology of vitamin E. Mol Nutr Food Res 49: 7–30, 2005

    Article  PubMed  CAS  Google Scholar 

  14. Pearce BC, Parker RA, Deason ME, Dischino DD, Gillespie E, Qureshi AA, Volk K, Wright JJ: Inhibitors of cholesterol biosynthesis. 2. Hypocholesterolemic and antioxidant activities of benzopyran and tetrahydronaphthalene analogues of the tocotrienols. J Med Chem. 37: 526–541, 1994

    Article  PubMed  CAS  Google Scholar 

  15. Theriault A, Chao JT, Wang Q, Gapor A, Adeli K: Tocotrienol: a review of its therapeutic potential. Clin Biochem.32: 309–319, 1999

    Article  PubMed  CAS  Google Scholar 

  16. Serbinova E, Kagan V, Han D, Packer L: Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Rad Biol Med 10: 263–275, 1991

    Article  PubMed  CAS  Google Scholar 

  17. Suzuki YJ, Tsuchiya M, Wassall SR, Choo YM, Govil G, Kagan VE, Packer L: Structural and dynamic membrane properties of alpha-tocopherol and alpha-tocotrienol: implication to the molecular mechanism of their antioxidant potency. Biochemistry 32: 10692–10699, 1993

    Article  PubMed  CAS  Google Scholar 

  18. Palozza P, Piccioni E, Avanzi L, Vertuani S, Calviello G, Manfredini S: Design, synthesis, and antioxidant activity of FeAOX-6, a novel agent deriving from a molecular combination of the chromanyl and polyisoprenyl moieties. Free Rad Biol Med 33: 1724–1735, 2002

    Article  PubMed  CAS  Google Scholar 

  19. Palozza P, Moualla S, Krinsky NI: Effects of beta-carotene and alpha-tocopherol on radical-initiated peroxidation of microsomes. Free Rad Biol Med 13: 127–136, 1992

    Article  PubMed  CAS  Google Scholar 

  20. Tatum VL, Changohit C, Chow CK: Measurement of Malondialdehyde by high performance liquid chromatography with fluorescence detection. Lipids 25: 226–229, 1990

    CAS  Google Scholar 

  21. Buege JA, Aust SD: Microsomal lipid peroxidation. Methods Enzymol 52: 302–310, 1978

    PubMed  CAS  Google Scholar 

  22. Palozza P, Serini S, Di Nicuolo F, Boninsegna A, Torsello A, Maggiano N, Ranelletti FO, Wolf FI, Calviello G, Cittadini A: beta-Carotene exacerbates DNA oxidative damage and modifies p53-related pathways of cell proliferation and apoptosis in cultured cells exposed to tobacco smoke condensate. Carcinogenesis 25: 1315–1325, 2004

    Article  PubMed  CAS  Google Scholar 

  23. Frankel EN: Interfacial lipid oxidation and antioxidation. J Oleo Sci 50: 387–391, 2001

    CAS  Google Scholar 

  24. Traber MG, Packer L: Vitamin E: beyond antioxidant function. Am J Clin Nutr 62 Suppl 1501S–1509S, 1995

    PubMed  CAS  Google Scholar 

  25. Packer L, Weber SU, Rimbach G: Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling. J Nutr 131: 369S–373S, 2001

    PubMed  CAS  Google Scholar 

  26. Rimbach G, Minihane AM, Majewicz J, Fischer A, Pallauf J, Virgli F, Weinberg PD: Regulation of cell signalling by vitamin E. Proc Nutr Soc 61: 415–425, 2002

    Article  PubMed  CAS  Google Scholar 

  27. Yoshida Y, Niki E, Noguchi N: Comparative study on the action of tocopherols and tocotrienols as antioxidant: chemical and physical effects. Chem Phys Lipids 123: 63–75, 2003

    Article  PubMed  CAS  Google Scholar 

  28. Suarna C, Hood RL, Dean RT, Stocker R: Comparative antioxidant activity of tocotrienols and other natural lipid-soluble antioxidants in a homogeneous system, and in rat and human lipoproteins. Biochim Biophys Acta 1166: 163–170, 1993

    PubMed  CAS  Google Scholar 

  29. Kamat JP, Devasagayam TP: Tocotrienols from palm oil as potent inhibitors of lipid peroxidation and protein oxidation in rat brain mitochondria. Neurosci Lett 195: 179–182, 1995

    Article  PubMed  CAS  Google Scholar 

  30. Kamat JP, Sarma HD, Devasagayam TP, Nesaretnam K, Basiron Y: Tocotrienols from palm oil as effective inhibitors of protein oxidation and lipid peroxidation in rat liver microsomes. Mol Cell Biochem 170: 131–137, 1997

    Article  PubMed  CAS  Google Scholar 

  31. Niki E: Free radical initiators as source of water- or lipid-soluble peroxyl radicals. Methods Enzymol 186: 100–108, 1990

    Article  PubMed  CAS  Google Scholar 

  32. Palozza P, Luberto C, Ricci P, Sgarlata E, Calviello G, Bartoli GM: Effect of beta-carotene and canthaxanthin on tert-butyl hydroperoxide-induced lipid peroxidation in murine normal and tumor thymocytes. Arch Biochem Biophys 325: 145–151, 1996

    Article  PubMed  CAS  Google Scholar 

  33. Toyokuni S: Reactive oxygen species-induced molecular damage and its application in pathology. Pathol Int 49: 91–102, 1999

    Article  PubMed  CAS  Google Scholar 

  34. Palozza P, Agostara G, Piccioni E, Bartoli GM: Different role of lipid peroxidation in oxidative stress-induced lethal injury in normal and tumor thymocytes. Arch Biochem Biophys 312: 88–94, 1994

    Article  PubMed  CAS  Google Scholar 

  35. Miccadei S, Nakae D, Kyle ME, Gilfor D, Farber JL: Oxidative cell injury in the killing of cultured hepatocytes by allyl alcohol. Arch Biochem Biophys 265: 302–310, 1988

    Article  PubMed  CAS  Google Scholar 

  36. Farber JL, Leonard TB, Kyle ME, Nakae D, Serroni A, Rogers SA: Peroxidation-dependent and peroxidation-independent mechanisms by which acetaminophen kills cultured rat hepatocytes. Arch Biochem Biophys 267: 640–650, 1988

    Article  PubMed  CAS  Google Scholar 

  37. Schnellmann RG: Intracellular calcium chelators and oxidant-induced renal proximal tubule cell death. J Biochem Toxicol 6: 299–303, 1991

    PubMed  CAS  Google Scholar 

  38. Chen Q, Stevens JL: Inhibition of iodoacetamide and t-butylhydroperoxide toxicity in LLC-PK1 cells by antioxidants: a role for lipid peroxidation in alkylation induced cytotoxicity. Arch Biochem Biophys 284: 422–430, 1991

    Article  PubMed  CAS  Google Scholar 

  39. Sen CK, Khanna S, Roy S, Packer L: Molecular basis of vitamin E action. Tocotrienol potently inhibits glutamate-induced pp60(c-Src) kinase activation and death of HT4 neuronal cells. J Biol Chem 275: 13049–13055, 2000

    CAS  Google Scholar 

  40. Osakada F, Hashino A, Kume T, Katsuki H, Kaneko S, Akaike A: Alpha-tocotrienol provides the most potent neuroprotection among vitamin E analogs on cultured striatal neurons. Neuropharmacology 47: 904–915, 2004

    Article  PubMed  CAS  Google Scholar 

  41. Martindale JL, Holbrook NJ: Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192: 1–15, 2002

    Article  PubMed  CAS  Google Scholar 

  42. Gorman AM, Heavey B, Creagh E, Cotter TG, Samali A: Antioxidant-mediated inhibition of the heat shock response leads to apoptosis. FEBS Lett 445: 98–102, 1999

    Article  PubMed  CAS  Google Scholar 

  43. Pirkkala L, Nykanen P, Sistonen L: Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15: 1118–1131, 2001

    Article  PubMed  CAS  Google Scholar 

  44. McIntyre BS, Briski KP, Tirmenstein MA, Fariss MW, Gapor A, Sylvester PW: Antiproliferative and apoptotic effects of tocopherols and tocotrienols on normal mouse mammary epithelial cells. Lipids 35: 171–180, 2000

    PubMed  CAS  Google Scholar 

  45. Tirmenstein MA, Watson BW, Haar NC, Fariss MW: Sensitive method for measuring tissue alpha-tocopherol and alpha-tocopheryloxybutyric acid by high-performance liquid chromatography with fluorometric detection. J Chromatogr B Biomed Sci Appl 707: 308–311, 1998

    Article  PubMed  CAS  Google Scholar 

  46. Fariss MW, Fortuna MB, Everett CK, Smith JD, Trent DF, Djuric Z: The selective antiproliferative effects of alpha-tocopheryl hemisuccinate and cholesteryl hemisuccinate on murine leukemia cells result from the action of the intact compounds. Cancer Res 54: 3346–3351, 1994

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Palozza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palozza, P., Verdecchia, S., Avanzi, L. et al. Comparative antioxidant activity of tocotrienols and the novel chromanyl-polyisoprenyl molecule FeAox-6 in isolated membranes and intact cells. Mol Cell Biochem 287, 21–32 (2006). https://doi.org/10.1007/s11010-005-9020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-9020-7

Keywords

Navigation