Skip to main content
Log in

Alarm Systems and Catastrophes from a Diverse Point of View

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

Using a chain of urns, we build a Bayesian nonparametric alarm system to predict catastrophic events, such as epidemics, black outs, etc. Differently from other alarm systems in the literature, our model is constantly updated on the basis of the available information, according to the Bayesian paradigm. The papers contains both theoretical and empirical results. In particular, we test our alarm system on a well-known time series of sunspots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldous D (1985) Lecture notes in mathematics: exchangeability and related topics. Springer Verlag, New York

    Google Scholar 

  • Amaral-Turkman MA, Turkman KF (1990) Optimal alarm systems for autoregressive process; a Bayesian approach. Comput Stat Data An 19:307–314

    Article  MathSciNet  Google Scholar 

  • Amerio E, Muliere P, Secchi P (2004) Reinforced urn processes for modeling credit default distributions. Int J Theor Appl Financ 7:407–423

    Article  MathSciNet  MATH  Google Scholar 

  • Antunes M, Amaral-Turkman MA, Turkman FK (2003) A Bayesian approach to event prediction. J Time Ser An 24:631–646

    Article  MathSciNet  MATH  Google Scholar 

  • Blackwell D, MacQueen JB (1973) Ferguson distributions via Polya-urn schemes. Ann Stat 1:353–355

    Article  MathSciNet  MATH  Google Scholar 

  • Brännäs K, Nordström J (2004) An integer-valued time series model for hotels that accounts for constrained capacity. Stud Nonlinear Dyn E 8:97–105

    Google Scholar 

  • Bulla P (2005) Application of reinforced urn processes to survival analysis. PhD Thesis Bocconi University

  • Chattopadhyay R (2000) Covariation of critical frequency of F 2-layer and relative sunspot number. Bulletin Astron Soc India

  • Cifarelli DM, Regazzini E (1978) Problemi statistici non parametrici in condizioni di scambiabilit parziale. Impiego di medie associative. IMF University of Turin scientific report 3, 12. English translation available online: http://www.unibocconi.it/wps/allegatiCTP/CR-Scamb-parz[1].20080528.135739.pdf

  • Cirillo P (2008) New urn approach to shock and default models. PhD Thesis Bocconi University

  • Cirillo P, Hüsler J (2009) An urn-based approach to generalized extreme shock models. Stat Probab Lett 79:969–976

    Article  MATH  Google Scholar 

  • Cirillo P, Hüsler J (2011) Extreme shock models: an alternative approach. Stat Probab Lett 81:25–30

    Article  MATH  Google Scholar 

  • Cirillo P, Hüsler J, Muliere P (2010) A nonparametric approach to interacting failing systems with an application to credit risk modeling. Int J Theor Appl Financ 13:1–18

    Article  Google Scholar 

  • Coppersmith D, Diaconis P (1986) Random walk with reinforcement. Unpublished Manuscript

  • Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms. MIT Press and McGraw-Hill

  • de Finetti B (1975) Theory of probability II. Wiley, New York

    Google Scholar 

  • de Maré J (1980) Optimal prediction of catastrophes with application to Gaussian process. Ann Probab 8:841–850

    Article  MathSciNet  MATH  Google Scholar 

  • Diaconis P, Freedman D (1980) de Finetti’s theorem for Markov chains. Ann Probab 8:115–130

    Article  MathSciNet  MATH  Google Scholar 

  • Doksum K (1974) Tailfree and neutral random probabilities and their posterior distributions. Ann Stat 2:183–201

    MATH  Google Scholar 

  • Eggenberger F, Polya G (1923) Über die Statistik verketteter Vorgänge. Zeitschrift für Angewandte Mathematik and Mechanik 1:279–289

    Article  Google Scholar 

  • Giudici P, Mezzetti M, Muliere P (2003) Mixtures of products of Dirichlet processes for variable selection in survival analysis. J Stat Plan Infer 111:101–115

    Article  MathSciNet  MATH  Google Scholar 

  • Grage H, Holst J, Lindgren G, Saklak M (2010) Level crossing prediction with neural networks. Methodol Comput Appl Probab 12:623–645

    Article  MathSciNet  MATH  Google Scholar 

  • Grandpierre A (2004) On the origin of solar cycle periodicity. Astrophys Space Sci 243:393–400

    Article  Google Scholar 

  • Hüsler J (1993) A note on exceedances and rare events of non-stationary sequences. J Appl Probab 30:877–888

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson NL, Kotz S (1977). Urn models and their applications. Wiley, New York

    Google Scholar 

  • Lindgren G (1975a) Prediction for a random time point. Ann Probab 3:412–433

    Article  MathSciNet  MATH  Google Scholar 

  • Lindgren G (1975b). Prediction of catastrophes and high level crossings. Bulletin Int Stat Institut 46:225–240

    MathSciNet  Google Scholar 

  • Lindgren G (1980) Model process in non-linear prediction, with application to detection and alarm. Ann Probab 8:775–792

    Article  MathSciNet  MATH  Google Scholar 

  • Mahmoud HM (2009) Polya urn models. CRC Press, New York

    MATH  Google Scholar 

  • Marshall AW, Olkin I (1993) Bivariate life distributions from Polya’s urn model for contagion. J Appl Probab 30:497–508

    Article  MathSciNet  MATH  Google Scholar 

  • Mclachlan GJ, Krishnan T (1997) The EM algorithm and extensions. Wiley, New York

    MATH  Google Scholar 

  • Mezzetti M, Muliere P, Bulla P (2007) An application of reinforced urn processes to determining maximum tolerated dose. Stat Probab Lett 77:740–747

    Article  MathSciNet  MATH  Google Scholar 

  • Monteiro M, Pereira I, Scotto MG (2008) Optimal alarm systems for count process. Commun Stat-Theor M 37:3054–3076

    Article  MathSciNet  Google Scholar 

  • Muliere P, Secchi P, Walker SG (2000) Urn schemes and reinforced random walks. Stoch Proc Appl 88:59–78

    Article  MathSciNet  MATH  Google Scholar 

  • Muliere P, Secchi P, Walker SG (2003) Reinforced random processes in continuous time. Stoch Proc Appl 104:117–130

    Article  MathSciNet  MATH  Google Scholar 

  • Muliere P, Paganoni AM, Secchi P (2006) A randomly reinforced urn. J Stat Plan Infer 136:1853–1874

    Article  MathSciNet  MATH  Google Scholar 

  • Pemantle R (2007) A survey of random processes with reinforcement. Probab Surv 4:1–79

    MathSciNet  MATH  Google Scholar 

  • Svensson A, Lindquist R, Lindgren G (1996) Optimal prediction of catastrophes in autoregressive moving average processes. J Time Ser An 17:511–531

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng HT, Basawa IV, Datta S (2006) Inference for the p-th order random coefficient integer-valued autoregressive processes. J Time Ser An 27:411–440

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Cirillo.

Additional information

This work has been partially supported by the Swiss National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirillo, P., Hüsler, J. & Muliere, P. Alarm Systems and Catastrophes from a Diverse Point of View. Methodol Comput Appl Probab 15, 821–839 (2013). https://doi.org/10.1007/s11009-012-9281-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-012-9281-z

Keywords

AMS 2010 Subject Classifications

Navigation