Skip to main content
Log in

Fractional Normal Inverse Gaussian Process

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

Normal inverse Gaussian (NIG) process was introduced by Barndorff-Nielsen (Scand J Statist 24:1–13, 1997) by subordinating Brownian motion with drift to an inverse Gaussian process. Increments of NIG process are independent and are stationary. In this paper, we introduce dependence between the increments of NIG process, by subordinating fractional Brownian motion to an inverse Gaussian process and call it fractional normal inverse Gaussian (FNIG) process. The basic properties of this process are discussed. Its marginal distributions are scale mixtures of normal laws, infinitely divisible for the Hurst parameter 1/2 ≤ H < 1 and are heavy tailed. First order increments of the process are stationary and possess long-range dependence (LRD) property. It is shown that they have persistence of signs LRD property also. A generalization to an n-FNIG process is also discussed, which allows Hurst parameter H in the interval (n − 1, n). Possible applications to mathematical finance and hydraulics are also pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Applebaum D (2004) Levy processes and stochastic calculus. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Barndorff-Nielsen OE (1997) Normal inverse Gaussian distributions and stochastic volatility modeling. Scand J Statist 24:1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Beran J (1994) Statistics for long-memory processes. Chapman & Hall, New York

    MATH  Google Scholar 

  • Bertoin J (1996) Levy processes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bondesson L (1979) A general result on infinite divisibility. Ann Probab 7(6):965–979

    Article  MathSciNet  MATH  Google Scholar 

  • Clark PK (1973) A subordinated process model with finite variance for speculative prices. Econometrica 41:135–155

    Article  MathSciNet  MATH  Google Scholar 

  • Cont R, Tankov P (2004) Financial modeling with jump processes. Chapman & Hall CRC Press, Boca Raton

    Google Scholar 

  • Devroye L (1986) Nonuniform random variate generation. Springer, New York

    Google Scholar 

  • Embrechts P, Maejima M (2002) Selfsimilar processes. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Feller W (1971) Introduction to probability theory and its applications, vol II. Wiley, New York

    MATH  Google Scholar 

  • Halgreen C (1979) Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions. Z Wahrscheinlichkeitstheor Verw Geb 47:13–17

    Article  MathSciNet  MATH  Google Scholar 

  • Heyde CC (1999) A risky asset model with strong dependence through fractal activity time. J Appl Probab 34(4):1234–1239

    MathSciNet  Google Scholar 

  • Heyde CC (2002) On modes of long-range dependence. J Appl Probab 39:882–888

    Article  MathSciNet  MATH  Google Scholar 

  • Heyde CC, Leonenko NN (2005) Student processes. Adv Appl Probab 37:342–365

    Article  MathSciNet  MATH  Google Scholar 

  • Jørgensen B (1982) Statistical properties of the generalized inverse Gaussian distribution. Lecture Notes in Statistics, vol 9. Springer-Verlag, New York

    Google Scholar 

  • Kelker D (1971) Infinite divisibility and variance mixtures of the normal distribution. Ann Math Statist 42:802–808

    Article  MathSciNet  MATH  Google Scholar 

  • Kozubowski TJ, Meerschaert MM, Podgorski K (2006) Fractional Laplace motion. Adv Appl Prob 38:451–464

    Article  MathSciNet  MATH  Google Scholar 

  • Linde W, Shi Z (2004) Evaluating the small deviation probabilities for subordinated Levy processes. Stoch Process Their Appl 113:273–287

    Article  MathSciNet  MATH  Google Scholar 

  • Madan DB, Seneta E (1990) The variance gamma (V.G.) model for share markets returns. J Bus 63:511–524

    Article  Google Scholar 

  • Madan DB, Carr P, Chang EC (1998) The variance gamma process and option pricing. European Finance Review 2:74–105

    Article  Google Scholar 

  • Mandelbrot BB (2001) Scaling in financial prices: I. Tails and dependence. Quantitative Finance 1:113–123

    Article  MathSciNet  Google Scholar 

  • Mandelbrot BB, Taylor H (1967) On the distribution of stock price differences. Oper Res 15:1057–1062

    Article  Google Scholar 

  • Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motion, fractional noises and applications. SIAM Rev 10:422–438

    Article  MathSciNet  MATH  Google Scholar 

  • Mandelbrot BB, Fisher A, Calvet L (1997) A multifractal model of asset returns. Cowles Foundation discussion paper no. 1164

  • Meerschaert MM, Kozubowski TJ, Molz FJ, Lu S (2004) Fractional Laplace model for hydraulic conductivity. Geophys Res Lett 31:L08501

    Article  Google Scholar 

  • Molz FJ, Bowman GK (1993) A fractal-based stochastic interpolation scheme in subsurface hydrology. Water Resour Res 32:1183–1195

    Google Scholar 

  • Painter S (1996) Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary formations. Water Resour Res 32:1183–1195

    Article  Google Scholar 

  • Perrin E, Harba R, Berzin-Joseph C, Iribarren I, Bonami A (2001) nth-Order fractional Brownian motion and fractional Gaussian noises. IEEE Trans Signal Process 49:1049–1059

    Article  Google Scholar 

  • Samorodnitsky G, Taqqu MS (2000) Stable non-Gaussian random processes: stochastic models with infinite variance. CRC Press, Boca Raton

    Google Scholar 

  • Sato K (2001) Subordination and self-decomposability. Stat Probab Lett 54(3):317–324

    Article  MATH  Google Scholar 

  • Shephard N (1995) Statistical aspects of ARCH and stochastic volatility. In time series models. In: Cox DR, Hinkley DV, Barndorff-Nielsen OE (eds) Econometrics, finance and others fields. Chapman & Hall, London, pp 1–67

    Google Scholar 

  • Steutel FW, Van Harn K (2004) Infinite divisibility of probability distributions on the real line. Marcel Dekker, New York

    MATH  Google Scholar 

  • Thorin O (1978) An extension of the notion of a generalized gamma convolution. Scand Actuar J 3:141–149

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palaniappan Vellaisamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Vellaisamy, P. Fractional Normal Inverse Gaussian Process. Methodol Comput Appl Probab 14, 263–283 (2012). https://doi.org/10.1007/s11009-010-9201-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-010-9201-z

Keywords

AMS 2000 Subject Classifications

Navigation