Skip to main content
Log in

Finite-Time Ruin Probabilities for Discrete, Possibly Dependent, Claim Severities

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

An important question in insurance is how to evaluate the probabilities of (non-) ruin of a company over any given horizon of finite length. This paper aims to present some (not all) useful methods that have been proposed so far for computing, or approximating, these probabilities in the case of discrete claim severities. The starting model is the classical compound Poisson risk model with constant premium and independent and identically distributed claim severities. Two generalized versions of the model are then examined. The former incorporates a non-constant premium function and a non-stationary claim process. The latter takes into account a possible interdependence between the successive claim severities. Special attention will be paid to a recursive computational method that enables us to tackle, in a simple and unified way, the different models under consideration. The approach, still relatively little known, relies on the use of remarkable families of polynomials which are of Appell or generalized Appell (Sheffer) types. The case with dependent claim severities will be revisited accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asmussen S (2000) Ruin probabilities. World Scientific, Singapore

    Google Scholar 

  • Biard R, Lefèvre C, Loisel S (2008) Impact of correlation crises in risk theory: asymptotics of finite-time ruin probabilities for heavy-tailed claim amounts when some independence and stationarity assumptions are relaxed. Insur Math Econ 43:412–421

    Article  MATH  Google Scholar 

  • Denuit M, Lefèvre C, Picard P (2003) Polynomial structures in order statistics distributions. J Stat Plan Inference 113:151–178

    Article  MATH  Google Scholar 

  • De Vylder FE (1996) Advanced risk theory: a self-contained introduction. Editions de l’Université Libre de Bruxelles, Bruxelles.

    Google Scholar 

  • De Vylder FE (1997) La formule de Picard et Lefèvre pour la probabilité de ruine en temps fini. Bulletin Francais d’Actuariat 1:31–40

    Google Scholar 

  • De Vylder FE (1999) Numerical finite-time ruin probabilities by the Picard-Lefèvre formula. Scand Actuar J 2:97–105

    Article  Google Scholar 

  • De Vylder FE, Goovaerts MJ (1988) Recursive calculation of finite-time ruin probabilities. Insur Math Econ 7:1–7

    Article  MATH  Google Scholar 

  • Dickson DCM (1999) On numerical evaluation of finite time survival probabilities. Br Actuar J 5:575–584

    Google Scholar 

  • Dickson DCM (2005) Insurance risk and ruin. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Dickson DCM, Waters HR (1991) Recursive calculation of survival probabilities. ASTIN Bull 21:199–221

    Article  Google Scholar 

  • Gerber HU (1979) An introduction to mathematical risk theory. S.S. Huebner Foundation Monograph. University of Philadelphia, Philadelphia

    Google Scholar 

  • Grandell J (1990) Aspects of risk theory. Springer, New York

    Google Scholar 

  • Ignatov ZG, Kaishev VK (2000) Two-sided bounds for the finite time probability of ruin. Scand Actuar J 1:46–62

    MathSciNet  Google Scholar 

  • Ignatov ZG, Kaishev VK (2004) A finite-time ruin probability formula for continuous claim severities. J Appl Probab 41:570–578

    Article  MATH  MathSciNet  Google Scholar 

  • Ignatov ZG, Kaishev VK, Krachunov RS (2001) An improved finite-time ruin probability formula and its mathematica implementation. Insur Math Econ 29:375–386

    Article  MATH  MathSciNet  Google Scholar 

  • Kaas R, Goovaerts MJ, Dhaene J, Denuit M (2001) Modern actuarial risk theory. Kluwer, Dordrecht

    Google Scholar 

  • Lefèvre C (2007) Discrete compound Poisson process with curved boundaries: polynomial structures and recursions. Methodol Comput Appl Probab 9:243–262

    Article  MATH  MathSciNet  Google Scholar 

  • Lefèvre C, Loisel S (2008) On finite-time ruin probabilities for classical risk models. Scand Actuar J 1:41–60

    Article  Google Scholar 

  • Lefèvre C, Picard P (2006) A nonhomogeneous risk model for insurance. Comput Math Appl 51:325–334

    Article  MATH  MathSciNet  Google Scholar 

  • Loisel S, Privault N (2008) Sensivity analysis and density estimation for finite-time ruin probabilities. Working paper, Cahiers de recherche de l’I.S.F.A. (W.P. 2041), Université de Lyon

  • Loisel S, Mazza C, Rullière D (2008) Robustness analysis and convergence of empirical finite-time ruin probabilities and estimation of risk solvency margin. Insur Math Econ 42:746–762

    Article  MATH  Google Scholar 

  • Niederhausen H (1981) Sheffer polynomials for computing exact Kolmogorov-Smirnov and Rényi type distributions. Ann Stat 9:923–944

    Article  MATH  MathSciNet  Google Scholar 

  • Panjer HH, Willmot GE (1992) Insurance risk models. Society of Actuaries, Schaumburg

    Google Scholar 

  • Picard P, Lefèvre C (1996) First crossing of basic counting processes with lower non-linear bundaries: a unified approach through pseudopolynomials (I). Adv Appl Probab 28:853–876

    Article  MATH  Google Scholar 

  • Picard P, Lefèvre C (1997) The probability of ruin in finite time with discrete claim size distribution. Scand Actuar J 1:58–69

    Google Scholar 

  • Picard P, Lefèvre C (2003) Probabilité de ruine éventuelle dans un modèle de risque à temps discret. J Appl Probab 40:543–556

    Article  MATH  MathSciNet  Google Scholar 

  • Picard P, Lefèvre C, Coulibaly I (2003a) Problèmes de ruine en théorie du risque à temps discret avec horizon fini. J Appl Probab 40:527–542

    Article  MATH  MathSciNet  Google Scholar 

  • Picard P, Lefèvre C, Coulibaly I (2003b) Multirisks model and finite-time ruin probabilities. Methodol Comput Appl Probab 5:337–353

    Article  MATH  MathSciNet  Google Scholar 

  • Rolski T, Schmidli H, Schmidt V, Teugels J (1999) Stochastic processes for insurance and finance. Wiley, Chichester

    Book  MATH  Google Scholar 

  • Rullière D, Loisel S (2004) Another look at the Picard-Lefèvre formula for finite-time ruin probabilities. Insur Math Econ 35:187–203

    Article  MATH  Google Scholar 

  • Seal HL (1969) The stochastic theory of a risk business. Wiley, New York

    Google Scholar 

  • Shiu ESW (1988) Calculation of the probability of eventual ruin by Beekman’s convolution series. Insur Math Econ 7:41–47

    Article  MATH  MathSciNet  Google Scholar 

  • Takács L (1967) Combinatorial methods in the theory of stochastic processes. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Lefèvre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefèvre, C., Loisel, S. Finite-Time Ruin Probabilities for Discrete, Possibly Dependent, Claim Severities. Methodol Comput Appl Probab 11, 425–441 (2009). https://doi.org/10.1007/s11009-009-9123-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-009-9123-9

Keywords

AMS 2000 Subject Classification

Navigation